
Vines and Vineyards
by Updating Persistence in Linear Time ∗

David Cohen-Steiner
INRIA, 2004 Route des

Lucioles, BP93
Sophia-Antipolis, France

dcohen@sophia.inria.fr

Herbert Edelsbrunner
Dept Computer Science,
Duke University, Durham

Geomagic, RTP
North Carolina, USA

edels@cs.duke.edu

Dmitriy Morozov
Dept Computer Science
Duke University, Durham

North Carolina, USA
morozov@cs.duke.edu

ABSTRACT
Persistent homology is the mathematical core of recent work on
shape, including reconstruction, recognition, and matching. Its per-
tinent information is encapsulated by a pairing of the critical values
of a function, visualized by points forming a diagram in the plane.
The original algorithm in [10] computes the pairs from an ordering
of the simplices in a triangulation and takes worst-case time cubic
in the number of simplices. The main result of this paper is an
algorithm that maintains the pairing in worst-case linear time per
transposition in the ordering. A side-effect of the algorithm’s anal-
ysis is an elementary proof of the stability of persistence diagrams
[7] in the special case of piecewise-linear functions. We use the
algorithm to compute 1-parameter families of diagrams which we
apply to the study of protein folding trajectories.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations, Computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics—Counting problems

General Terms
Algorithms, Theory

1. INTRODUCTION
At first sight, persistent homology may seem like an abstract

mathematical notion hopelessly detached from physical reality. We
agree with the first assessment but believe that the concept has
something fundamental to contribute to scientific understanding in
a broad sense.

∗The authors were partially supported by NSF under grant CCR-
00-86013, by DARPA under grant HR0011-05-1-0007, and by the
Lawrence Livermore National Laboratory under grant B543154.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

Motivation. The starting point of the work described in this paper
is the stability of persistence diagrams established in [7]. Given a
continuous function on a topological space, we express topological
properties in terms of the homology groups of its sublevel sets and
visualize these properties combinatorially, using points in the plane
to form the persistence diagram. In a nutshell, the stability result
states that small changes in the function imply small changes in
the diagram. If we now take a function that changes continuously
in time, we can watch the diagram and understand the changes by
observing how the points move and rearrange to form fleeting pat-
terns. We may solidify the patterns by stacking up the diagrams,
letting each point trace out a curve in space, which we refer to as
a vine. We believe that this construction is a powerful metaphor
aimed at gaining insight into continuous processes but also to quan-
tify some of their less tangible aspects. However, constructing the
vine turned out to be more difficult than expected. Common time-
series data is too sparse to compute them by matching the points in
contiguous diagrams, and refining the series is expensive and some-
times not sufficiently powerful to remove all ambiguities. This pa-
per describes an alternative approach to constructing the vines by
maintaining an ordering of the simplices during a straight-line ho-
motopy.

Results and prior work. This paper builds on prior work on per-
sistent homology and the stability of persistence diagrams. The
concept of persistence can be seen embedded within the theory of
spectral sequences [13] but has not been treated as a concept in its
own right until [10]. The latter paper also describes a fast algorithm
for modulo 2 homology and demonstrates that persistence is rele-
vant to applications, including the study of protein structure. The
concept and the algorithm have been extended to homology over
fields in [6]. The stability of persistence diagrams has been estab-
lished in [7], opening the concept up to additional applications, in-
cluding the inference of homology from point clouds, see also [9],
the comparison of shapes, see also [5], and the analysis of discrete
curvature measures, see [8]. Independently, the same ideas were
developed from a somewhat different angle and restricted to zero-
homology by a group of researchers in Italy [3]. Using different
terminology, they introduced persistence diagrams and proved sta-
bility, albeit only for the evolution of components in sublevel sets
[2]. The main contributions of this paper to the theory and practice
of persistent homology are:

1. an algorithm that maintains the persistence diagram in time
O(n) per transposition, where n is the number of simplices
used to represent the topological space and the function;

2. a new and elementary proof of the stability of persistence

diagrams in the case of piecewise-linear functions;

3. the definition and computation of vineyards (continuous fam-
ilies of persistence diagrams) for time-series of continuous
functions;

4. preliminary steps towards the application of vineyards to the
study of protein folding trajectories.

Similar to [17], our aim in the application is to learn about protein
folding by viewing the process through a quantifiable combinatorial
lens. The preliminary results are encouraging and will hopefully
lead to a broader and deeper investigation of the subject.

Outline. Section 2 reviews the technical background needed to de-
scribe our work. Section 3 presents the algorithm for updating the
persistence diagram. Section 4 gives the new proof of stability, in-
troduces vineyards, and applies them to the study of protein folding
trajectories. Section 5 concludes the paper.

2. BACKGROUND
In this section, we introduce the necessary background from al-

gebraic topology. We begin with a brief review of homology groups
and refer to Munkres [15] for details. Continuing with the relatively
recent concept of persistence, we introduce persistence diagrams
and state in which sense they are stable. Finally, we address com-
putations in terms of filtrations and recast the algorithm of [10] as
a matrix reduction method.

Homology groups. Recall that a triangulation of a topological
space, X, is a simplicial complex, K, whose underlying space is
homeomorphic to X. A p-chain is a subset of the p-dimensional
simplices in K or, equivalently, a formal sum in which each p-
simplex appears with coefficient 0 or 1. We add p-chains modulo
2, which is the same as taking the symmetric difference of sets.
This gives the (abelian) group of p-chains, Cp. The boundary of
a p-simplex is its set of (p − 1)-dimensional faces, and that of a
p-chain is the sum of boundaries of its simplices. We thus have a
sequence of groups of chains, one for each dimension, connected
by boundary homomorphisms,

. . .
∂p+2→ Cp+1

∂p+1→ Cp
∂p→ Cp−1

∂p−1→ . . .

A p-cycle is a p-chain with zero boundary, and a p-boundary is the
boundary of a (p + 1)-chain. In other words, the group of p-cycles
is the kernel of the p-th boundary homomorphism, Zp = Zp(K) =
ker ∂p, and the group of p-boundaries is the image of the (p+1)-st
boundary homomorphism, Bp = Bp(K) = im ∂p+1. The bound-
ary of a boundary is always zero, which implies that Bp is a sub-
group of Zp. We can therefore take the quotient of the two, the p-th
homology group, Hp = Hp(K) = Zp/Bp. Since we work with
modulo 2 arithmetic, the homology groups are vector spaces over
Z2 = Z/2Z. The p-th Betti number is the dimension or rank of
the p-th homology group, βp = βp(K) = rank Hp. Importantly,
homology groups and Betti numbers are properties of X and do not
depend on the particular triangulation we use to compute them.

Assuming an ordering of the (p − 1)-simplices and of the p-
simplices, the boundary of a p-chain can be obtained by multi-
plication of the corresponding vector with the incidence matrix,
∂p(cp) = Dpcp, where Dp[i, j] = 1 if the i-th (p − 1)-simplex
is a face of the j-th p-simplex, and Dp[i, j] = 0 otherwise. A
classic algorithm computes the Betti numbers of K by reducing its
incidence matrices to Smith normal form. It uses row and column
operations to zero out all entries except along an initial portion of
the diagonal, as shown in Figure 1. In the normal form of Dp, the

zero columns form a basis of the p-cycles and the non-zero rows
form a basis of the (p− 1)-boundaries. We can thus read the ranks
of the cycle and the boundary groups off the normal forms and get
βp = rank Zp − rank Bp, for each p.

1

1

1 . . . 0

Zrank

Brank

p

−1p

Figure 1: Smith normal form of the incidence matrix between
(p− 1)-simplices and p-simplices.

Persistence. Consider a continuous function f : X → R and its
sublevel sets, Xr = f−1(−∞, r]. The inclusion of Xr in Xs, for
r ≤ s, implies a homomorphism between the homology groups of
same dimension, hr,s

p : Hp(Xr) → Hp(Xs). We write Hr,s
p =

im hr,s
p for the image and refer to it as a dimension p persistent

homology group of f . Indeed, its elements are homology classes
that persist in the sense they are born at or before value r and last
beyond value s. The corresponding dimension p Betti numbers are
the ranks of these groups, βr,s

p = rank Hr,s
p .

Call r ∈ R a homological critical value of f if there is a dimen-
sion p such that for sufficiently small ε > 0 the map Hp(Xr−ε) →
Hp(Xr+ε) is not an isomorphism. To continue, we assume that f
is tame, by which we mean it has only finitely many homologi-
cal critical values and the homology groups of its sublevel sets all
have finite rank. Letting a1 < a2 < . . . < a` be the sequence
of homological critical values, we add a0 = −∞ and a`+1 = ∞
and choose interleaving values ai < bi < ai+1 for 0 ≤ i ≤ `.
Consider the pair (ai, aj), for 0 ≤ i < j ≤ ` + 1, and define its
dimension p multiplicity as

µi,j
p = rank H

bi+1,bj
p − rank H

bi,bj
p

+rank H
bi,bj+1
p − rank H

bi+1,bj+1
p .

It is not difficult to show that the pairs determine the persistent Betti
numbers, namely

βr,s
p =

X
ai≤r≤s<aj

µi,j
p . (1)

This relation suggests we draw the pair (ai, aj) as µi,j
p points in the

plane, each at the same location with coordinates ai and aj above
the diagonal. Some of the coordinates may be infinite so we really
talk about the extended plane, R̄2. The interpretation of Equation
(1) in this geometric setting is that βr,s

p is the number of points in
the north-west quadrant with corner (r, s) whenever r and s are not
homological critical values.

Stability. The dimension p persistence diagram of f , denoted as
Dp(f), consists of the points (ai, aj) introduced above together
with infinitely many copies of all points along the diagonal. The
reason for adding the diagonal is technical and will be obvious
shortly. Given two continuous and tame functions f, g : X → R,
we measure their distance using the L∞-norm of their difference:
‖f − g‖∞ = supx∈X |f(x) − g(x)|. Similarly, we introduce the
bottleneck distance between their persistence diagrams as the in-
fimum, over all bijections γ : Dp(f) → Dp(g), of the largest

distance between corresponding points,

dB(Dp(f), Dp(g)) = inf
γ

sup
u∈Dp(f)

‖u− γ(u)‖∞.

With this notation, we are ready to state in which sense the persis-
tence diagram is stable.

STABILITY THEOREM. For a triangulable space X, two contin-
uous and tame functions f, g : X → R, and any dimension p ≥ 0,
the bottleneck distance between the two dimension p persistence
diagrams is bounded from above by the distance between the func-
tions: dB(Dp(f), Dp(g)) ≤ ‖f − g‖∞.

The proof of this result given in [7] is fairly technical and involves
commutative diagrams of vector spaces of homology classes. We
will give an alternative and comparably elementary proof for piece-
wise linear functions at the beginning of Section 4. The theorem is
interesting because it states that a small change in the function can-
not result in a big change in the diagram. In other words, we can
tell that two functions are grossly different if they have significantly
different persistence diagrams. The reverse of this implication is of
course not true.

Computation. Similar to homology, we compute persistence dia-
grams from a discrete representation of a continuous function f :
X → R. Assuming a triangulation K of X, we use a monotone
function f̄ : K → R (satisfying f̄(σ) ≤ f̄(τ) if σ is a face of τ)
and a corresponding filter (an ordering of K in which simplices are
preceded by their faces and f̄ is non-decreasing). For example, if
f is given in terms of its values at the vertices of K, we may set
f̄(σ) equal to the maximum function value at the vertices of σ and
form a filter by sorting the simplices in the order of non-decreasing
values of f̄ . If the function values at the vertices are distinct, this
is an ordering of the lower stars of the vertices, sorting each lower
star in the order of non-decreasing dimension. We note that f̄ is a
piecewise constant approximation of f . It is not difficult to see that
the persistence diagram of f̄ is the same as that of the piecewise
linear function defined by the values at the vertices.

An algorithm that computes the persistence diagrams by pairing
the simplices in a given filter can be found in [10]. We recast this
algorithm in terms of the overall incidence matrix, D, defined by

D[i, j] =


1 if σi ∈ ∂σj ,
0 otherwise,

where σi and σj are the i-th and the j-th simplices in the filter.
The algorithm uses column operations to reduce D to another 0-1
matrix R. To explain what exactly we mean, let lowR(j) be the row
index of the last 1 in column j of R and keep lowR(j) undefined if
the column is zero. We call R reduced and lowR a pairing function
if lowR(j) 6= lowR(j′) whenever j 6= j′ specify two non-zero
columns. The algorithm reduces D by adding columns to other
columns located to their right.

R = D
for j = 1 to n do
while ∃j′ < j with lowR(j′) = lowR(j) do

add column j′ to column j
endwhile

endfor.

In matrix notation, the algorithm computes the reduced matrix as
R = DV , where V is an invertible upper-triangular matrix with Z2

coefficients. The above algorithm is just one way to compute such
a reduced matrix, the complete Smith normal form algorithm being
another possibility. The reduced matrix is therefore not unique,

but we will prove shortly that the collection of pairs (σi, σj) with
i = lowR(j) is independent of the reduced matrix. Here we call
σi positive and σj negative because σi creates the homology class
that σj destroys. By construction, the two simplices in a pair have
contiguous dimensions, and if dim σi = dim σj − 1 = p then we
add the corresponding point with coordinates (f̄(σi), f̄(σj)) to the
dimension p persistence diagram.

3. UPDATING THE PAIRING
In this section, we present the algorithm that updates the pairing

function under a transposition of two simplices in the filter. We
begin with a characterization of the persistence pairing in terms of
ranks of submatrices of the incidence matrix.

Uniqueness of pairing function. Let R be a reduced 0-1 matrix
as defined in the previous section, and write Rj

i for the lower left
minor obtained by deleting the first i − 1 rows and the last n − j
columns. Any combination of non-zero columns of Rj

i has its last
non-zero entry at the same height as the lowest non-zero entry of
any of the involved columns. The combination can therefore not
be zero implying that the combined non-zero columns are linearly
independent. Recall that the algorithm in [10] can be interpreted as
computing the reduced matrix R = DV , where V is invertible and
upper-triangular. Since invertible upper-triangular matrices form a
group, we can write D as the product RU of the reduced matrix R
and the invertible upper-triangular matrix U = V −1. We call such
a decomposition an RU-decomposition of D. In this decomposi-
tion, positive simplices correspond to zero columns and negative
simplices to non-zero columns in R. Define

rD(i, j) = rank Dj
i − rank Dj

i+1

+ rank Dj−1
i+1 − rank Dj−1

i .

We prove below that the pairing function can be expressed in terms
of rD and is thus independent of the particular RU-decomposition
used to define it.

PAIRING UNIQUENESS LEMMA. Letting D = RU , we have
lowR(j) = i iff rD(i, j) = 1. In particular, the pairing function
does not depend on the matrix R in the RU-decomposition.

PROOF. Note that adding columns to columns located to their
right does not change the rank of lower left minors, so rD = rR.
To prove the claim, it is thus sufficient to show that lowR(j) = i
iff rR(i, j) = 1. First assume lowR(j) = i. As argued above, the
non-zero columns of Rj

i are linearly independent. The last column
is non-zero, so rank Rj

i−rank Rj−1
i = 1. Now if we delete the top

row from Rj
i then the last column is zero, implying rank Rj

i+1 −
rank Rj−1

i+1 = 0, as required. Second assume lowR(j) 6= i and
consider Rj

i and Rj
i+1. If lowR(j) < i the last columns in both

matrices are zero and we have rank Rj
i = rank Rj−1

i as well as
rank Rj

i+1 = rank Rj−1
i+1 . If lowR(j) > i the last columns in both

matrices are non-zero and we have rank Rj
i = rank Rj−1

i + 1 and
rank Rj

i+1 = rank Rj−1
i+1 + 1. In both cases the claimed result

follows.

Performing a transposition. To swap the simplices in positions i
and i + 1, we exchange rows i and i + 1 as well as columns i and
i+1 in D. The new incidence matrix is therefore PDP , where P is
the permutation matrix that swaps i and i+1. To update the pairing
function, we just need to repair the RU-decomposition, which we
now show how to do in time O(n). We have PDP = PRUP =

(PRP)(PUP), but this is not necessarily an RU-decomposition.
As illustrated in Figure 2, PRP is not reduced iff there are columns
k and l with lowR(k) = i, lowR(l) = i + 1, and R[i, l] = 1.
Furthermore, PUP is not upper-triangular iff U [i, i + 1] = 1.
We may assume that the algorithm adds only columns that belong

lk i+1 i+1

PRPR

i

PUPU

i

i+1

lk

i

11
11

11
1

1
1 1 1

1

Figure 2: The transposition renders this particular R non-
reduced and this particular U non-upper-triangular.

to simplices of the same dimension. The two cases illustrated in
Figure 2 therefore arise only if the simplices at positions i and i+1
have the same dimension, which we thus assume. In all other cases,
PRP is reduced and PUP is upper-triangular.

Case 1 Both i and i + 1 are positions of positive simplices. Since
column i in R is zero we may set U [i, i + 1] = 0, if this is
not the case. It follows that PUP is upper-triangular and we
only need to consider PRP .

Case 1.1 There are columns k and l with lowR(k) = i,
lowR(l) = i + 1, and R[i, l] = 1.

Case 1.1.1 k < l, as in Figure 2, left. To reduce PRP ,
we add column k to column l. Letting V be the
upper-triangular matrix that performs this opera-
tion, we have PDP = (PRPV)(V PUP) since
V V = I . By construction, PRPV is reduced.
Furthermore, adding row l to row k preserves PUP
as an upper-triangular matrix. It follows that this is
an RU-decomposition of the new incidence matrix.

Case 1.1.2 l < k. To reduce PRP , we add column l
to column k on its right. Letting V be the upper-
triangular matrix that performs this operation, we
have PDP = (PRPV)(V PUP) as an RU-de-
composition, same as Case 1.1.1.

Case 1.2 There are no columns k and l as in Case 1.1. Then
PDP = (PRP)(PUP) is an RU-decomposition.

Case 2 Both i and i+1 are positions of negative simplices. In this
case, rows i and i + 1 cannot contain the lowest 1s of any
columns. It follows that PRP is reduced and we only need
to consider PUP .

Case 2.1 U [i, i + 1] = 1, as in Figure 2, right. To make the
second matrix in the decomposition upper-triangular,
we add row i+1 of U to row i. Letting W be the upper-
triangular matrix that performs this operation, we have
PDP = (PRWP)(PWUP). The effect of W on R
is it adds column i to column i + 1.

Case 2.1.1 lowR(i) < lowR(i + 1). Then RW is
reduced and so is PRWP and we have an RU-
decomposition.

Case 2.1.2 lowR(i + 1) < lowR(i). Then RW is not
reduced, but we can reduce it by adding column
i + 1 to column i. After the transposition, this is
adding column i of RWP to column i+1 and we

get PDP = (PRWPW)(WPWUP). The sec-
ond matrix is upper-triangular and first is reduced,
as illustrated in Figure 3, top row.

Case 2.2 U [i, i + 1] = 0. Then PDP = (PRP)(PUP) is
an RU-decomposition.

Case 3 i is the position of a negative simplex and i + 1 is the po-
sition of a positive simplex.

Case 3.1 U [i, i + 1] = 1, as in Figure 2, right. Just like
in Case 2.1, we add row i + 1 of U to row i and get
PDP = (PRWP)(PWUP). The second matrix
in the decomposition is upper-triangular. However, the
first matrix is not reduced, and we reduce it by adding
column i of RWP to column i + 1, giving PDP =
(PRWPW)(WPWUP) as the final decomposition;
see Figure 3, bottom row.

Case 3.2 U [i, i + 1] = 0. Then PDP = (PRP)(PUP) is
an RU-decomposition.

Case 4 i is the position of a positive simplex and i + 1 is the po-
sition of a negative simplex. This is the reverse of Case 3.2.
Indeed we set U [i, i + 1] = 0 if this is not the case and get
the RU-decomposition PDP = (PRP)(PUP).

i+1i i+1i i+1i i+1i

RWPWRWPRWR

1/0

1 1

1/0 0/1

1

11/0

0

1 1 1 1 1 1

1

10/1

0 1 1

0/1

Figure 3: Evolutions of R to RWPW , in Case 2.1.2 on top and
in Case 3.1 on bottom.

Changes in pairing. There are three cases in which the pairing
function changes, all illustrated in Figure 4. The first is Case 1.1.2,

Figure 4: On the left we see Case 1.1.2 and, if read backwards,
Case 2.1.2. On the right we see Case 3.1.

characterized by i = lowR(k) < i + 1 = lowR(l) < l < k,
in which two nested intervals swap their left endpoints to remain
nested. The second is Case 2.1.2, characterized by lowR(i + 1) <
lowR(i) < i < i+1, in which two nested intervals swap their right
endpoints to remain nested. The third is Case 3.1, characterized by
lowR(i) < i < i + 1 = lowR(l) < l, in which two disjoint
intervals swap their near endpoints to remain disjoint.

Running time. In every case, a transposition triggers at most one
row exchange, one column exchange, and two column additions

in the matrix R. Symmetrically, there are at most one column ex-
change, one row exchange, and two row additions in U . This takes
time at most linear in the number of simplices.

In all applications we have encountered, R and U are both sparse
and we can save time and storage using a sparse matrix implemen-
tation. We explain such a data structure for R consisting of two
linear arrays, one for the set of columns and one for the set of rows,
and a singly linked list for each column, as sketched in Figure 5.
The j-th element of the column array points to the linked list of 1s
in the column. The i-th element in the row array represents the i-th
row in the original row sequence and stores its index in the current
row sequence. We also store the reverse link, from the current row
back to its corresponding original row. Each node in a linked list
stores its index in the original row sequence, which we interpret as
a pointer into the row array. To exchange two columns, we swap

1

1 1

1

1

Figure 5: The sparse matrix representation of R sketched by
showing the row and column arrays and the linked lists of two
columns.

their pointers (lists), which takes only constant time. To add a col-
umn to another, we merge the two lists, deleting nodes that come
in duplicates, and substitute the result for the second column. This
takes time proportional to the number of 1s in the two columns as
long as the lists are consistently sorted. We achieve this by protect-
ing the lists from row exchanges, keeping them sorted with respect
to the original row indices. A row exchange thus only updates the
correspondence between the original and the current orderings of
the rows, which takes only constant time.

We use a symmetric sparse matrix data structure preferring rows
over columns for U . The result is an implementation that takes
storage proportional to n plus the number of 1s in R and in U .
The amortized time for each operation is at most proportional to
the number of 1s in the affected rows and columns. The worst-
case time is O(n) per update, as before, but in our experiments the
average update time is about constant.

4. VINES AND VINEYARDS
We begin this section with an elementary proof of the Stabil-

ity Theorem for piecewise linear functions. Motivated by the re-
sult, we consider stacks of diagrams to get curves traced out by
the points. We use this construction to distill information about a
parametrized family of distance functions generated from the fold-
ing trajectory of a protein.

Stability of persistence diagrams. Let f, g : X → R be contin-
uous functions, K a simplicial complex, and Φ a homeomorphism
from the underlying space of K to X. The function f̄ : K → R
that maps each simplex σ ∈ K to f̄(σ) = maxx∈σ f(Φ(x)) is

a piecewise constant approximation of f that is monotone in the
sense of Section 2. Similarly, ḡ(σ) = maxx∈σ g(Φ(x)) is a piece-
wise constant approximation of g and monotone.

COMBINATORIAL STABILITY THEOREM. For monotone func-
tions f̄ , ḡ : K → R and any dimension p, the bottleneck dis-
tance between the two dimension p persistence diagrams satisfies
dB(Dp(f̄), Dp(ḡ)) ≤ ‖f̄ − ḡ‖∞.

PROOF. Consider the straight-line homotopy f̄t(σ) = (1 −
t)f̄(σ) + tḡ(σ), and note that f̄t is monotone for each 0 ≤ t ≤
1. Let t1 to tk be the values at which the ordering of the sim-
plices changes by one or several transpositions, and set t0 = 0 and
tk+1 = 1. Let ti ≤ r < s < ti+1, for any 0 ≤ i ≤ k, and
consider a pair of simplices, (σ, τ), defined for the ordering that
exists during the open time interval. Then ur = (f̄r(σ), f̄r(τ)) is
a point in Dp(f̄r) and us = (f̄s(σ), f̄s(τ)) is a point in Dp(f̄s).
The Manhattan distance between the two points is the larger of the
two coordinate differences, which implies

dB(Dp(f̄r), Dp(f̄s)) ≤ ‖f̄r − f̄s‖∞
= (s− r) · ‖f̄ − ḡ‖∞.

A transposition changes the pairing but it does not affect the persis-
tence diagram. Hence,

dB(Dp(f̄), Dp(ḡ)) ≤
kX

i=0

dB(Dp(f̄ti), Dp(f̄ti+1))

≤ ‖f̄ − ḡ‖∞
kX

i=0

(ti+1 − ti).

The latter sum is 1, which implies the claimed inequality.

As mentioned in Section 2, the persistence diagrams of the piece-
wise constant maps f̄t are the same as those of the piecewise linear
maps defined by the same values at the vertices. The theorem thus
implies the stability of persistence diagrams for the class of piece-
wise linear functions.

Stacking up persistence diagrams. Consider a homotopy ft in-
terpolating between f0 = f and f1 = g. Assuming every ft is
tame, we have a dimension p persistence diagram for every t and
p, and the Stability Theorem relating the various diagrams. We
draw Dp(ft) in the (extended) plane x3 = t in R̄3 thus getting
a 1-parameter family of diagrams which we call the dimension p
vineyard. Each off-diagonal point in Dp(ft) moves in time, tracing
out a curve we refer to as a vine. Each vine is either open (starting
and ending on the diagonal plane, x1 = x2), half-open, or closed
(starting at an off-diagonal point in x3 = 0 and ending at an off-
diagonal point in x3 = 1). If the homotopy is smooth then so
are the vines, except when the pairing of critical values changes.
We call such points knees and observe that they come in pairs. In
Cases 1 and 2, the two knees of a pair belong to two vines in the
same vineyard, while in Case 3, they belong to vines in vineyards
of contiguous dimensions. In practice, homotopies of functions
arise from time-series data, given as a sequence of frames which
are snapshots of the data at successive moments in time. Naturally,
an assumption needs to be made about how the function changes in
between the available frames. Ideally, such an assumption reflects
the change in the underlying phenomenon described by the func-
tion, but in the absence of any such an assumption it is convenient
to use the straight-line homotopy between the frames.

We illustrate these concepts by computing a sequence of vine-
yards for the folding trajectory of a protein. They are generated by

a piecewise linear function on a fixed triangulation, which is per-
haps the most common situation we will encounter in applications.

Folding trajectories. The question of how proteins fold is a grand
challenge in molecular biology and only modest progress has been
reported in the last decades. It appears that the scientific commu-
nity has not yet succeeded in simulating the folding process com-
putationally. Exceptions are very short sequences or simulations
over very short time intervals. We feel that vineyards can be useful
in understanding the few folding trajectories that have been com-
puted. One such trajectory describes the simulated folding motion
of BBA5, a short peptide of N = 23 amino acids [16]. The tra-
jectory is given as m + 1 = 201 frames covering a total of 40
picoseconds at regular intervals of 200 femtoseconds. For each
0 ≤ i ≤ m, the i-th snapshot is a configuration of this backbone
represented by a sequence Si of N points in R3, each the cen-
ter of an alpha carbon along the backbone; see Figure 6. We turn
the folding trajectory into vineyards using a 1-parameter family of
functions described below.

A

C

B

Figure 6: Top: snapshot 0, the initial backbone. Lower left:
snapshot 68, the alpha helix is complete. Lower right: snapshot
200, the final backbone.

Pairwise distance. Given a curve b : [0, 1] → R3 in space, the
pairwise distance function [0, 1]2 → R is defined by mapping (r, s)
to ‖b(r)− b(s)‖. Each function we consider is a piecewise lin-
ear approximation of such a pairwise distance function defined by
the corresponding backbone configuration. We need some nota-
tion. Recall that Si is the sequence of points describing the i-th
backbone and let ci,j be the j-th point in Si, for 1 ≤ j ≤ N .
Let K be the triangulation of [1, N]2 obtained by connecting con-
tiguous integer points along common horizontal, vertical, and 45-
degree lines. It consists of N2 vertices, (3N − 1)(N − 1) edges,
2(N − 1)2 triangles, and therefore of n < 6N2 simplices in total.
For each 0 ≤ i ≤ m, we construct fi : [1, N]2 → R by defining
fi(j, k) = ‖ci,j − ci,k‖ and extending the values at the vertices by
linear interpolation over the edges and triangles. To form a homo-
topy from f0 to fm that passes through all intermediate functions,
we finally define fi+λ = (1 − λ)fi + λfi+1, for all 0 ≤ i < m
and all 0 ≤ λ ≤ 1.

To construct the vineyards, we first compute the persistence di-
agrams of f0, which we then update through a sequence of trans-
positions, as explained in Section 3. We generate this sequence by
sweeping the arrangement of polylines Pjk : [0, m] → R defined
by Pjk(t) = ft(j, k), as illustrated in Figure 7. We have N2 poly-
lines with at most m crossings between each pair. Each crossing
corresponds to a transposition of two vertices. Using a standard

0 1 2 m m−2 −1 m

Figure 7: Sketch of the arrangement formed by the N2 poly-
lines representing the variation of function value at the vertices
of K.

plane-sweep algorithm, we can compute the ordered sequence in
time O(log n) per crossing. The resulting algorithm takes worst-
case time O(mn3) to construct the vineyards. In practice, the al-
gorithm runs significantly faster, first because mn2 is a gross over-
estimate of the usual number of crossings, and second because our
sparse-matrix implementation takes only about constant time per
update.

Discussion of the vineyards. The results are illustrated in Figure 8,
which shows the dimension 0 and 1 vineyards of the pairwise dis-
tance function. Each vine is drawn twice, as viewed from the front
(normal to the diagonal direction) and from the side (along the di-
agonal direction). To interpret Figure 8, we fix a value t ∈ [0, m]

x + y y − x x + y y − x

tt

Frame 66

2 · 40Å 2 · 40Å6Å 6Å

Frame 178

Frame 0

Frame 200

Figure 8: The front view (x+y, t) and the side view (y−x, t) of
the dimension 0 vineyard on the left and the dimension 1 vine-
yard on the right. The side views are simplified by removing
vines with lifetime less than 20 frames.

and consider a horizontal cross-section at height t. We note that
two points (r, s) and (v, w) belong to a common component of the
sublevel set f−1

t [0, α] iff the component contains a path from the
first point to the second. In other words, we can continuously move
point b(r) to b(v) and simultaneously b(s) to b(w), both along the
backbone b, such that the distance is less than or equal to α at all
times. For α = 0, the sublevel set consists of a single compo-
nent, the diagonal of the domain. As we increase α, we see new
components start at off-diagonal minima and components merge at
saddles of ft. The first critical points with non-zero value appear at
α between 5 and 6 Å, causing the characteristic gap of about twice
5.5 Å to the time axis in the front views of the vineyards. The gap
becomes particularly well defined when the alpha-helix is formed,
suggesting the gap measures the distance between two alpha car-
bons separated by a single turn of the helix.

The dimension 1 vineyard is somewhat more difficult to inter-
pret. It helps to break the folding process into three stages, the first
from Frame 0 to 68, the second from 68 to 170, and the third from
170 to 200. The first stage is characterized by large and seemingly
chaotic motions of the backbone that precipitate in vines across a
relatively wide range of scales visible in the front view, both for
the dimension 0 and 1 vineyards. At the end of the first stage,
an alpha helix forms and the backbone assumes a rough S-shape,
which remains until the end of the second stage. Covering almost
the same time interval, we see a dimension 1 vine emerging from
the diagonal at Frame 66 and surviving until the Frame 178 when
it disappears into the diagonal. There are 59 knees on this vine,
and its maximum persistence (distance from the diagonal which is
visible in the side view) is less than 6Å and at times drops well
below 1Å. Nevertheless, the vine is very long-lived which suggests
that even subtle configurations can stay around for a while. Let us
take a closer look at this long vine representing a cycle created at a
saddle and destroyed at a maximum. While the atom pairs respon-
sible for the saddle and the maximum (AC and AB in Figure 6 for
Frame 68) change as the vine evolves, they always span the tail of
the backbone which remains intact during the second stage. Figure
9 shows the graph of the function together with a cycle in the ho-
mology class of the feature. During the third stage, we see the tail
of the S-shape turn around and point back to the alpha helix. In the
dimension 1 vineyard, we see three vines of persistence up to 5Å
emerge from the diagonal shortly after Frame 178 and survive until
the end, at Frame 200.

In conclusion, we note that the folding process is very complex
and it seems difficult to agree on when exactly events begin and
end. This is in sharp contrast to a vine, which is unambiguously
associated to a feature and has a precisely defined beginning and
end. Furthermore, at any moment in time, the scale and the persis-
tence of that feature are quantitatively expressed by the coordinates
of the corresponding point on the vine. We thus believe that vines
can be used to objectively and quantitatively encapsulate events in
the process described by a homotopy.

5. DISCUSSION
We conclude with a small number of questions aimed at improv-

ing and extending the results presented in this paper.

• Are there variants of the update algorithm that are more effi-
cient than the one described in Section 3 or that are simpler
and just as efficient? For example, can we update the pairing
by only maintaining the reduced matrix, R, and not the ma-
trix U that does the reducing? Is there an advantage in treat-
ing rows and columns differently or is the symmetric version
more efficient?

Figure 9: Pairwise distance function for Frame 68 of the BBA5
folding trajectory. The highlighted cycle is destroyed by the
marked maximum and belongs to the homology class responsi-
ble for the long-lived vine.

• In many applications, the points in the persistence diagram
further away from the diagonal are more important than the
points close to the diagonal. Can we use or adopt the up-
date algorithm to compute the points with persistence beyond
some threshold without spending time on the others? We de-
sire an algorithm whose running time depends only on the
size of the output it produces and not on the size of the entire
diagram.

• Vineyards trace critical values and do not require any notion
of critical points. However, when critical points are avail-
able, such as for smooth and for piecewise linear functions
on manifolds [4, 14], we can use the update algorithm to
maintain their association with the points in the persistence
diagram. Can we exploit this ability to gain a better under-
standing of the stability or instability of critical points? In
particular, can this ability be developed into a global align-
ment algorithm for shapes that is more general and more re-
liable than what is currently available [11, 12]?

Finally, we would like to suggest that vineyards should not be lim-
ited to homotopies but rather considered an analysis and visualiza-
tion tool for parametrized families of functions. A point in case is
the elevation function [1] whose maxima have been useful in coarse
protein docking [18]. For a surface in space, this function is based
on the sphere of height functions whose vines are 2-manifolds in
R̄2 × S2.

Acknowledgments
The authors thank Vijay Pande, Young Min Rhee, and Vishal Vaidya-
nathan for providing the BBA5 data set.

6. REFERENCES
[1] P. K. AGARWAL, H. EDELSBRUNNER, J. HARER AND Y.

WANG. Extreme elevation on a 2-manifold. In “Proc. 20th
Ann. Sympos. Comput. Geom., 2004”, 357–365.

[2] M. D’AMICO, P. FROSINI AND C. LANDI. Optimal
matching between reduced size functions. Tech. Rept. 35,
DISMI, Univ. degli Studi di Modena e Reggio Emilia, Italy,
2003.

[3] M. D’AMICO, P. FROSINI AND C. LANDI. Natural
pseudo-distance and optimal matching between reduced size
functions. Tech. Rept. 66, DISMI, Univ. degli Studi di
Modena e Reggio Emilia, Italy, 2005.

[4] T. BANCHOFF. Critical points and curvature for embedded
polyhedra. J. Diff. Geom. 1 (1967), 245–256.

[5] G. CARLSSON, A. COLLINS, L. GUIBAS AND A.
ZOMORODIAN. Persistence barcodes for shapes. In “Proc.
2nd Sympos. Geometry Process., 2004”, 127–138.

[6] G. CARLSSON AND A. ZOMORODIAN. Computing
persistent homology. In “Proc. 20th Ann. Sympos. Comput.
Geom., 2004”, 347–356.

[7] D. COHEN-STEINER, H. EDELSBRUNNER AND J. HARER.
Stability of persistence diagrams. In “Proc. 21st Ann.
Sympos. Comput. Geom., 2005”, 263–271.

[8] D. COHEN-STEINER AND H. EDELSBRUNNER. Inequalities
for the curvature of curves and surfaces. In “Proc. 21st Ann.
Sympos. Comput. Geom., 2005”, 272–277.

[9] V. DE SILVA AND G. CARLSSON. Topological estimation
using witness complexes. In “Proc. Sympos. Point-Based
Graphics, 2004”, 157–166.

[10] H. EDELSBRUNNER, D. LETSCHER AND A.
ZOMORODIAN. Topological persistence and simplification.
Discrete Comput. Geom. 28 (2002), 511–533.

[11] N. GELFAND, N. J. MITRA, L. J. GUIBAS AND H.
POTTMANN. Robust global alignment. In “Proc. 3rd Ann.
Eurographics Sympos. Geom. Process., 2005”, 197–206.

[12] D. HUBER AND M. HEBERT. Fully automatic registration of
multiple 3D data sets. Image Vision Comput. 21 (2003),
637–650.

[13] J. MCCLEARY. User’s Guide to Spectral Sequences. Publish
or Perish, Wilmington, Delaware, 1985.

[14] J. MILNOR. Morse Theory. Princeton Univ. Press, New
Jersey, 1963.

[15] J. R. MUNKRES. Elements of Algebraic Topology.
Addison-Wesley, Redwood City, California, 1984.

[16] Y. M. RHEE, E. J. SORIN, G. JAYACHANDRAN, E.
LINDAHL AND V. PANDE. Simulations of the role of water
in the protein-folding mechanism. Proc. Natl. Acad. Sci. 101
(2004), 6456–6461.

[17] D. RUSSELL AND L. J. GUIBAS. Exploring protein folding
trajectories using geometric spanners. In “Proc. Pacific
Sympos. Biocomput., 2005”, 40–51.

[18] Y. WANG, P. K. AGARWAL, P. BROWN, H.
EDELSBRUNNER AND J. RUDOLPH. Coarse and reliable
geometric alignment for protein docking. In “Proc. Pacific
Sympos. Biocomput., 2005”, 65–75.

