
Witnessed k-Distance

Extended abstract

Leonidas Guibas
Department of Computer

Science Stanford University
guibas@cs.stanford.edu

Quentin Mérigot
Laboratoire Jean Kuntzmann

Université Grenoble 1 and
CNRS

quentin.merigot@imag.fr

Dmitriy Morozov
Departments of Computer
Science and Mathematics

Stanford University
dmitriy@mrzv.org

ABSTRACT
Distance function to a compact set plays a central role in
several areas of computational geometry. Methods that rely
on it are robust to the perturbations of the data by the
Hausdorff noise, but fail in the presence of outliers. The
recently introduced distance to a measure offers a solution
by extending the distance function framework to reasoning
about the geometry of probability measures, while maintain-
ing theoretical guarantees about the quality of the inferred
information. A combinatorial explosion hinders working with
distance to a measure as an ordinary power distance func-
tion. In this paper, we analyze an approximation scheme
that keeps the representation linear in the size of the input,
while maintaining the guarantees on the inference quality
close to those for the exact but costly representation.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; I.3.5 [Compu-
ter Graphics]: Computational Geometry and Object Mod-
eling; I.5.1 [Pattern Recognition]: Models—Geometric

General Terms
Algorithms, Theory

Keywords
geometric inference, power distance, computational topology

1. INTRODUCTION
The problem of recovering the geometry and topology of

compact sets from finite point samples has seen several impor-
tant developments in the previous decade. Homeomorphic
surface reconstruction algorithms have been proposed to deal
with surfaces in R3 sampled without noise [1] and with mod-
erate Hausdorff (local) noise [11]. In the case of submanifolds
of a higher dimensional Euclidean space [17], or even for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’11, June 13–15, 2011, Paris, France.
Copyright 2011 ACM 978-1-4503-0682-9/11/06 ...$10.00.

more general compact subsets [4], it is also possible, at least
in principle, to compute the homotopy type from a Haus-
dorff sampling. If one is only interested in the homology of
the underlying space, the theory of persistent homology [13]
applied to Rips graphs provides an algorithmically tractable
way to estimate the Betti numbers from a finite Hausdorff
sampling [6].

All of these constructions share a common feature: they
estimate the geometry of the underlying space by a union
of balls of some radius r centered at the data points P . A
different way to interpret this union is as the r-sublevel
set of the distance function to P , dP : x 7→ minp∈P ‖x− p‖.
Distance functions capture the geometry of their defining sets,
and they are stable to Hausdorff perturbations of those sets,
making them well-suited for reconstruction results. However,
they are also extremely sensitive to the presence of outliers
(i.e. data points that lie far from the underlying set); all
reconstruction techniques that rely on them fail even in
presence of a single outlier.

To counter this problem, Chazal, Cohen-Steiner, and Méri-
got [5] developed a notion of distance function to a probability
measure that retains the properties of the (usual) distance
important for geometric inference. Instead of assuming an
underlying compact set that is sampled by the points, they
assume an underlying probability measure µ from which the
point sample P is drawn. The distance function dµ,m0 to the
measure µ depends on a mass parameter m0 ∈ (0, 1). This
parameter acts as a smoothing term: a smaller m0 captures
the geometry of the support better, while a larger m0 leads to
better stability at the price of precision. The crucial feature of
the function dµ,m0 is its stability to the perturbations of the
measure µ under the Wasserstein distance, defined in Section
2.2. For instance, the Wasserstein distance between the
underlying measure µ and the uniform probability measure
on the point set P can be small even if P contains some
outliers. When this happens, the stability result ensures that
distance function d1P ,m0 to the uniform probability measure
1P on P retains the geometric information contained in the
underlying measure µ and its support.

Computing with distance functions to measures. In
this article we address the computational issues related to
this new notion. If P is a subset of Rd containing N points,
and m0 = k/N , we will denote the distance function to the
uniform measure on P by dP,k. As observed in [5], the value
of dP,k at a given point x is easy to compute: it is the square
root of the average squared distance from the point x to its
k nearest neighbors in P . However, most inference methods
require a way to represent the function, or more precisely its



sublevel sets, globally. It turns out that the distance function
dP,k can be rewritten as a minimum

d2
P,k(x) = min

c̄
‖x− c̄‖2 − wc̄, (1)

where c̄ ranges over the set of barycenters of k points in P (see
Section 3). Computational geometry provides a rich toolbox
to represent sublevel sets of such functions, for example, via
weighted α-complexes [12].

The difficulty in applying these methods is that to get
an equality in (1) the minimum number of barycenters to
store is the same as the number of order-k Voronoi sites
of P , making this representation unusable even for modest
input sizes. The solution that we propose is to construct
an approximation of the distance function dP,k, defined by
the same equation as (1), but with c̄ ranging over a smaller
subset of barycenters. In this article, we study the quality of
approximation given by a linear-sized subset: the witnessed
barycenters defined as the barycenters of any k points in
P whose order-k Voronoi cell contains at least one of the
sample points. The algorithmic simplicity of the scheme is
appealing: we only have to find the k − 1 nearest neighbors
for each input point. We denote by dw

P,k and call witnessed
k-distance the function defined by Equation (1), where c̄
ranges over the witnessed barycenters.

Contributions. Our goal is to give conditions on the point
cloud P under which the witnessed k-distance dw

P,k provides
a good uniform approximation of the distance to measure
dP,k. We first give a general multiplicative bound on the
error produced by this approximation. However, most of our
paper (Sections 4 and 5) analyzes the uniform approxima-
tion error, when P is a set of independent samples from a
measure concentrated near a lower-dimensional subset of the
Euclidean space. The following is a prototypical example
for our setting, although the analysis we propose allows for
a wider range of problems. Note that some of the common
settings in the literature either fit directly into this example,
or in its logic: the mixture of Gaussians [10] and off-manifold
Gaussian noise in normal directions [16] are two examples.

(H1) We assume that the “ground truth” is an unknown
probability measure µ whose dimension is bounded by
a constant ` � d. Practically, this means that µ is
concentrated on a compact set K ⊆ R whose dimension
is at most `, and that its mass distribution shouldn’t
“forget”any part of K (see Definition 3). As an example
µ could be the uniform measure on a smooth compact
`-dimensional submanifold K, or on a finite union of
such submanifolds.

This hypothesis ensures that the distance to the measure µ
is close to the distance to the support K of µ, and lets us
recover information about K. Our first result (Witnessed
Bound Theorem 2) states that if the uniform measure to a
point cloud P is a good Wasserstein-approximation of µ, then
the witnessed k-distance to P provides a good approximation
of the distance to the underlying compact set K. The bound
we obtain is only a constant times worse than the bound for
the exact k-distance.

(H2) The second assumption is that we are not sampling
directly from µ, but through a noisy channel. We model
this by considering that our measurements come from

a measure ν, which is obtained by adding noise to µ.
For instance, ν could be the result of the convolution
of µ with a Gaussian distribution N (0, d−1σ2I) whose
variance is σ2. More generally, ν can be any measure
such that the Wasserstein distance from µ to ν is at
most σ. This generalization allows, in particular, to
consider noise models that are not translation-invariant.

(H3) Finally, we suppose that our input data set P ⊆ Rd
consists of N points drawn independently from the
noisy measure ν. Denote with 1P the uniform measure
on P .

These two hypothesis allow us to control the Wasserstein
distance between µ and 1P with high probability. We assume
that the point cloud P is gathered following the three hy-
pothesis above. Our second result states that the witnessed
k-distance to P provides a good approximation of the dis-
tance to the compact set K with high probability, as soon
as the amount of noise σ is low enough and the number of
points N is large enough.

Approximation Theorem (Theorem 4). Let P be a set
of N points drawn according to the three hypothesis (H1)-
(H3), let k ∈ {1, . . . , N} and m0 = k/N . Then, the error
bound

‖dw
P,k − dK‖∞ ≤ 54m

−1/2
0 σ + 24m

1/`
0 α−1/`

µ

holds with probability at least

1− γµ exp(−βµN max(σ2+2`, σ4)− ` ln(σ))

where the constants βµ and γµ depend only on µ.

Outline. The relevant background appears in Section 2. We
present our approximation scheme together with a general
bound of its quality in Section 3. We analyze its approxima-
tion quality for measures concentrated on low-dimensional
subsets of the Euclidean space in Section 4. The convergence
of the uniform measure on a point cloud sampled from a
measure of low complexity appears in Section 5 and leads to
our main result. We illustrate the utility of the bound with
an example and a topological inference statement in our final
Section 6.

2. BACKGROUND
We begin by reviewing the relevant background.

2.1 Measure
Let us briefly recap the few concepts of measure theory

that we use. A non-negative measure µ on the space Rd is a
map from (Borel) subsets of Rd to a non-negative numbers,
which is additive in the sense that µ (∪i∈NBi) =

∑
i µ(Bi)

whenever (Bi) is a countable family of disjoint (Borel) sub-
sets. The total mass of a measure µ is mass(µ) := µ(Rd). A
measure µ with unit total mass is called a probability mea-
sure. The support of a measure µ, denoted by spt(µ) is the
smallest closed set whose complement has zero measure. The
expectation or mean of µ is the point E(µ) =

∫
Rd xdµ(x); the

variance of µ is the number σ2
µ =

∫
Rd ‖x− E(µ)‖2dµ(x).

Although the results we present are often more general,
the typical probability measures we have in mind are of
two kinds: (i) the uniform probability measure defined by



(a) Data (b) Sublevel sets

Figure 1: (a) 6000 points sampled from a sideways figure 8 (in red), with circle radii R1 =
√

2 and R2 =
√

9/8.
The points are sampled from the uniform measure on the figure-8, convolved with the Gaussian distribution
N (0, σ2) where σ = .45. (b) r-sublevel sets of the witnessed (in gray) and exact (additional points in black)
k-distances with mass parameter m0 = 50/6000, and r = .239.

the volume form of a lower-dimensional submanifold of the
ambient space and (ii) discrete probability measures that are
obtained through noisy sampling of probability measures of
the previous kind. For any finite set P with N points, denote
by 1P the uniform measure supported on P , i.e. the sum of
Dirac masses centered at p ∈ P with weight 1/N .

2.2 Wasserstein distance
A natural way to quantify the distance between two mea-

sures is the Wasserstein distance. This distance measures
the L2-cost of transporting the mass of the first measure
onto the second one. A general study of this notion and
its relation to the problem of optimal transport appear in
[18]. We first give the general definition and then explain
its interpretation when one of the two measures has finite
support.

A transport plan between two measures µ and ν with the
same total mass is a measure π on the product space Rd×Rd
such that for every subsets A,B of Rd, π(A × Rd) = µ(A)
and π(Rd ×B) = ν(B). Intuitively, π(A×B) represents the
amount of mass of µ contained in A that will be transported
to B by π. The cost of this transport plan is given by

c(π) :=

(∫
Rd×Rd

‖x− y‖2dπ(x, y)

)1/2

Finally, the Wasserstein distance between µ and ν is the
minimum cost of a transport plan between these measures.

Consider the special case where the measure ν is supported
on a finite set P . This means that ν can be written as∑
p∈P αpδp, where δp is the unit Dirac mass at P . Moreover,∑
p αp must equal the total mass of µ. A transport plan π

between µ and ν corresponds to a decomposition of µ into a
sum of positive measures

∑
p∈P µp such that mass(µp) = αp.

The squared cost of the plan defined by this decomposition
is then

c(π) =

(∑
p∈P

[∫
Rd
‖x− p‖2dµp(x)

])1/2

.

Wasserstein noise. Two properties of the Wasserstein dis-

tances are worth mentioning for our purpose. Together, they
show that the Wasserstein noise and sampling model gener-
alize the commonly used empirical sampling with Gaussian
noise model:

• Consider a probability measure µ and f : Rd → R the
density of a probability distribution centered at the
origin, and denote by ν the result of the convolution
of µ by f . Then, the Wasserstein distance between µ
and ν is at most σ, where σ2 :=

∫
Rd ‖x‖

2f(x)dx is the
variance of the probability distribution defined by f .

• Let P denote a set of N points drawn independently
from a given measure ν. Then, the the Wasserstein dis-
tance W2(ν,1P ) between ν and the uniform probability
measure on P converges to zero as N grows to infinity
with high probability. Examples of such asymptotic
convergence results are common in statistics, e.g. [3]
and references therein. In Proposition 3 below, we give
a quantitative non-asymptotic result assuming that ν
is low-dimensional (H1).

Using the notation introduced in the two items above, one
has lim supN→+∞W2(µ,1p) ≤ σ with high probability. A
more quantitative version of this statement can be found in
Corollary 1.

2.3 Distance-to-measure and k-distance
In [5], the authors introduce a distance to a probability

measure as a way to infer the geometry and topology of this
measure in the same way the geometry and topology of a set
is inferred from its distance function. Given a probability
measure µ and a mass parameter m0 ∈ (0, 1), they define a
distance function dµ,m0 which captures the properties of the
usual distance function to a compact set that are used for
geometric inference.

Definition 1. For any point x in Rd, let δµ,m(x) be the
radius of the smallest ball centered at x that contains a
mass at least m of the measure µ. The distance to the
measure µ with parameter m0 is defined by dµ,m0(x) =

m
−1/2
0

(∫m0

m=0
δµ,m(x)2dm

)1/2
.



Given a point cloud P containing N points, the measure
of interest is the uniform measure 1P on P . When m0 is a
fraction k/N of the number of points (where k is an integer),
we call k-distance and denote by dP,k the distance to the
measure d1P ,m0 . The value of dP,k at a query point x is
given by

d2
P,k(x) =

1

k

∑
p∈NNk

P
(x)

‖x− p‖2.

where NNk
P (x) ⊆ P denotes the k nearest neighbors in P to

the point x ∈ Rd. (Note that while the k-th nearest neighbor
itself might be ambiguous, on the boundary of an order-k
Voronoi cell, the distance to the k-th nearest neighbor is
always well defined, and so is dP,k.)

The most important property of the distance function
dµ,m0 is its stability, for a fixed m0, under perturbations of
the underlying measure µ. This property provides a bridge
between the underlying (continuous) µ and the discrete mea-
sures 1P . According to [5, Theorem 3.5], for any two proba-
bility measures µ and ν on Rd,

‖dµ,m0 −dν,m0 ‖∞ ≤ m
−1/2
0 W2(µ, ν), (2)

where W2(µ, ν) denotes the Wasserstein distance between
the two measures. The bound in this inequality depends on
the choice of m0, which acts as a smoothing parameter.

3. WITNESSED k-DISTANCE
In this section, we describe a simple scheme for approx-

imating the distance to a uniform measure, together with
a general error bound. The main contribution of our work,
presented in Section 4, is the analysis of the quality of ap-
proximation given by this scheme when the input points
come from a measure concentrated on a lower-dimensional
subset of the Euclidean space.

3.1 k-Distance as a Power Distance
Given a set of points U = {u1, . . . , un} in Rd with weights

wu for every u ∈ U , we call power distance to U the function
powU obtained as the lower envelope of all the functions
x 7→ ‖u−x‖2−wu, where u ranges over U . By Proposition 3.1
in [5], we can express the square of any distance to a measure
as a power distance with non-positive weights. The following
proposition recalls this property of the k-distance dP,k.

Proposition 1. For any P ⊆ Rd, denote by Baryk(P ) the
set of barycenters of any subset of k points in P . Then

d2
P,k = min

{
‖x− c̄‖2 − wc̄; c̄ ∈ Baryk(P )

}
, (3)

where the weight of a barycenter c̄ = 1
k

∑
i pi is given by

wc̄ := − 1
k

∑
i ‖c̄− p‖

2.

Proof. For any subset C of k points in P , define

δ2
C(x) :=

1

k

∑
p∈C

‖x− p‖2

Denoting by c̄ the barycenter of the points in C, an easy
computation shows

δ2
C(x) =

1

k

∑
p∈C

‖x− p‖2 = ‖x− c̄‖2 − wc̄

where the weight is given by wc̄ = − 1
k

∑
p∈C ‖c̄− p‖

2. The
proposition follows from the definition of the k-distance.

In other words, the square of the k-distance function to
P coincides exactly with the power distance to the set of
barycenters Baryk(P ) with the weights defined above. From
this expression, it follows that the sublevel sets of the k-
distance dP,k are finite unions of balls,

d−1
P,k([0, ρ]) =

⋃
c∈NNk

P
(Rd)

B(c̄, (ρ2 + wc̄)
1/2).

Therefore, ignoring the complexity issues, it is possible to
compute the homotopy type of this sublevel set by considering
the weighted alpha-shape of Baryk(P ) (introduced in [12]),
which is a subcomplex of the regular triangulation of the set
of weighted barycenters.

From the proof of Proposition 1, we also see that the
only barycenters that actually play a role in (3) are the
barycenters of k points of P whose order-k Voronoi cell is
not empty. However, the dependence on the number of non-
empty order-k Voronoi cells makes computation intractable
even for moderately sized point clouds in the Euclidean space.

One way to avoid this difficulty is to replace the k-distance
to P by an approximate k-distance, defined as in Equa-
tion (3), but where the minimum is taken over a smaller set
of barycenters. The question is then: given a point set P ,
can we replace the set of barycenters BarykP in the defini-
tion of k-distance by a small subset B while controlling the

approximation error ‖ pow
1/2
B −dP,k‖∞?

This approach is especially attractive since many geometric
and topological inference methods using distance functions
to compact sets or to measures continue to hold when one of
the distance functions is replaced by a good approximation
in the class of power distances.

3.2 Approximating by witnessed k-distance
In order to approach this question, we consider a subset

of the supporting barycenters suggested by the input data
which we call witnessed barycenters. The answer to the
question is then essentially positive when the input point
cloud P satisfies the hypotheses (H1)-(H3).

Definition 2. For every point x in P , the barycenter of x
and its (k − 1) nearest neighbors in P is called a witnessed
k-barycenter. Let Barykw(P ) be the set of all such barycenters.
We get one witnessed barycenter for every point x of the
sampled point set, and define the witnessed k-distance,

dw
P,k = min{‖x− c̄‖2 − wc̄; c̄ ∈ Barykw(P )}.

Computing the set of all witnessed barycenters of a point
set P only requires finding the k − 1 nearest neighbors of
every point in P . This search problem has a long history
in computational geometry [2, 7, 14], and now has several
practical implementation.

General error bound. Because the distance functions we
consider are defined by minima, and Barykw(P ) is a subset of
Baryk(P ), the witnessed k-distance is always greater than
the exact k-distance. In the lemma below, we give a general
multiplicative upper bound. This lemma does not assume
any specific property for the input point set P . However,
even such a coarse bound can be used to estimate Betti
numbers of sublevel sets of dP,k, using arguments similar to
those in [6].



Lemma 1 (General Bound). For any finite point set P ⊆
Rd and 0 < k < |P |, one has

dP,k ≤ dw
P,k ≤ (2 +

√
2) dP,k

Proof. Let y ∈ Rd be a point, and p̄ the barycenter
associated to a cell that contains y. This translates into
dP,k(y) = dp̄(y). In particular, ‖p̄ − y‖ ≤ dP,k(y) and√−wp̄ ≤ dP,k(y).

Let us find a witnessed barycenter q̄ that is close to p̄.
We know that p̄ is the barycenters of k points x1, . . . , xn,
and that −wp̄ = 1

k

∑k
i=1 ‖xi − p̄‖2. Consequently, there

should exist an xi such that ‖xi − p̄‖ ≤
√−wp̄. Let q̄ be the

barycenter witnessed by x. Then,

dw
P,k(y) ≤ dq̄(y) ≤ dq̄(x) + ‖x− y‖

≤ dp̄(x) + ‖x− p̄‖+ ‖p̄− y‖

Combining the inequality

dp̄(x) =
(
‖x− p̄‖2 − wp̄

)1/2 ≤ √2
√
−wp̄

together with ‖x− p̄‖ ≤ √−wp̄, we get

dw
P,k(y) ≤ (1 +

√
2)
√
−wp̄ + ‖p̄− y‖

≤ (2 +
√

2) dP,k(y)

4. APPROXIMATION QUALITY
Let us recall briefly our hypothesis (H1)-(H3). There is

an ideal, well-conditioned measure µ on Rd supported on
an unknown compact set K. We also have a noisy version
of µ, that is another measure ν with W2(µ, ν) ≤ σ, and we
suppose that our data set P consists of N points indepen-
dently sampled from ν. In this section we give conditions
under which the witnessed k-distance to P provides a good
approximation of the distance to the underlying set K.

4.1 Dimension of a measure
First, we make precise the main assumption (H1) on the

underlying measure µ, which we use to bound the approxima-
tion error made when replacing the exact by the witnessed
k-distance. We require µ to be low dimensional in the fol-
lowing sense.

Definition 3. A measure µ on Rd is said to have dimension
at most `, which we denote by dimµ ≤ `, if there is a positive
constant αµ such that the amount of mass contained in the
ball B(p, r) is at least αµr

`, for every point p in the support
of µ and every r smaller than the diameter of this support.

The important assumption here is that the lower bound
µ(B(p, r)) ≥ αr` should be true for some positive constant
α and for r smaller than a given constant R. The choice of
R = diam(spt(µ)) provides a normalization of the constant
αµ and slightly simplifies the statements of the results.

Let M be an `-dimensional compact submanifold of Rd,
and f : M → R a positive weight function on M with values
bounded away from zero and infinity. Then, the dimension
of the volume measure on M weighted by the function f
is at most `. A quantitative statement can be obtained
using the Bishop-Günther comparison theorem; the bound
depends on the maximum absolute sectional curvature of the
manifold M (see e.g. Proposition 4.9 in [5]). Note that the
positive lower bound on the density is really necessary. For
instance, the dimension of the standard Gaussian distribution

N (0, 1) on the real line is not bounded by 1 — nor by any
positive constant. (This fact follows since the density of this
distribution decreases to zero faster than any polynomial as
one moves away from the origin.)

It is easy to see that if m measures µ1, . . . , µm have di-
mension at most `, then so does their sum. Consequently,
if (Mj) is a finite family of compact submanifolds of Rd
with dimensions (dj), and µj is the volume measure on Mj

weighted by a function bounded away from zero and infinity,
the dimension of the sum µ =

∑m
j=1 µj is at most maxj dj .

4.2 Bounds
In the remaining of this section, we bound the error be-

tween the witnessed k-distance dw
P,k and the (ordinary) dis-

tance dK to the compact set K. We start from a proposition
from [5] that bounds the error between the exact k-distance
dP,k and dK :

Theorem 1 (Exact Bound). Let µ denote a probability
measure with dimension at most `, and supported on a set
K. Consider the uniform measure 1P on a point cloud P ,
and set m0 = k/|P |. Then

‖dP,k − dK‖∞ ≤ m−1/2
0 W2(µ,1P ) + α−1/`

µ m
1/`
0 .

Proof. Recall that dP,k = d1P ,m0 . Using the triangle
inequality and Equation (2), one has

‖d1P ,m0 − dK‖∞ ≤ ‖dµ,m0 − d1P ,m0‖∞ + ‖dµ,m0 − dK‖∞
≤ m−1/2

0 W2(µ,1P ) + ‖dµ,m0 − dK‖∞

Then, from Lemma 4.7 in [5], ‖dµ,m0 − dK‖∞ ≤ α−1/`
µ m

1/`
0 ,

and the claim follows.

In the main theorem of this section, the exact k-distance
in the above bound is replaced by the witnessed k-distance.

Theorem 2 (Witnessed Bound). Let µ be a probability
measure satisfying the dimension assumption and let K be
its support. Consider the uniform measure 1P on a point
cloud P , and set m0 = k/|P |. Then,

‖dw
P,k − dK‖∞ ≤ 6m

−1/2
0 W2(µ,1P ) + 24m

1/`
0 α−1/`

µ .

Observe that the error term given by this theorem is a
constant factor times the bound in the previous theorem. Be-
fore proceeding with the proof, we prove an auxiliary lemma,
which emphasizes that a measure ν, close to a measure µ
satisfying an upper dimension bound (as in Definition 3),
remains concentrated around the support of µ.

Lemma 2 (Concentration). Let µ be a probability mea-
sure satisfying the dimension assumption, and ν be another
probability measure. Let m0 be a mass parameter. Then, for
every point p in the support of µ, ν(B(p, η)) ≥ m0, where

η = m
−1/2
0 W2(µ, ν) + 4m

1/2+1/`
0 α

−1/`
µ .

Proof. Let π be an optimal transport plan between ν
and µ. For a fixed point p in the support of K, let r be the
smallest radius such that B(p, r) contains at least 2m0 of
mass µ. Consider now a submeasure µ′ of µ of mass exactly
2m0 and whose support is contained in the ball B(p, r). This
measure is obtained by transporting a submeasure ν′ of ν
by the optimal transport plan π. Our goal is to determine
for what choice of η the ball B(p, η) contains a ν′-mass (and,



therefore, a ν-mass) of at least m0. We make use of the
Chebyshev’s inequality for ν′ to bound the mass of ν′ outside
of the ball B(p, η):

ν′(Rd \ B(p, η)) = ν′({x ∈ Rd; ‖x− p‖ ≥ η})

≤ 1

η2

∫
‖x− p‖2dν′

(4)

Observe that the right hand term of this inequality is exactly
the Wasserstein distance between µ′ and the Dirac mass
2m0δp. We bound it using the triangle inequality for the
Wasserstein distance:∫

‖x− p‖2dν′ = W2
2(ν′, 2m0δp)

≤ (W2(µ′, ν′) + W2(µ′, 2m0δp))
2

≤ (W2(µ, ν) + 2m0r)
2

(5)

Combining equations (4) and (5), we get:

ν(B̄(p, η)) ≥ ν′(B̄(p, η)) ≥ ν′(Rd)− ν′(Rd \ B(p, η))

≥ 2m0 −
(W2(µ, ν) + 2m0r)

2

η2
.

By the lower bound on the dimension of µ, and the definition
of the radius r, one has r ≤ (2m0/αµ)1/`. Hence, the ball
B̄(p, η) contains a mass of at least m0 as soon as

(W2(µ, ν) + α−1
µ 21+1/`m

1+1/`
0 )2

η2
≤ m0.

This will be true, in particular, if η is larger than

W2(µ, ν)m
−1/2
0 + 4α−1/`

µ m
1/2+1/`
0 .

Proof of the Witnessed Bound Theorem. Since the
witnessed k-distance is a minimum over fewer barycenters,
it is larger than the real k-distance. Using this fact and the
Exact Bound Theorem one gets the lower bound:

dw
P,k ≥ dP,k ≥ dK −m−1/2

0 W2(µ,1P ) + α−1/`
µ m

1/`
0

For the upper bound, if we set η as in Lemma 2, for every
point p in K, the ball B(p, η) contains at least k points in P .
Consider one of these points x1; its (k− 1) nearest neighbors
x2, . . . , xk in P cannot be at a distance greater than 2η from
x1. Hence, the points x1, . . . , xk belong to the ball B(p, 3η)
and so does their barycenter. This shows that the set W
of witnessed barycenters, obtained by this construction, is a
3η-covering of K, that is dW ≤ dK + 3η. Since the weight of
any barycenter in W is at most 3η, we get dw

P,k ≤ dW + 3η.
To sum up,

dw
P,k ≤ dW + 3η ≤ dK + 6η

Replacing η by its value from the Concentration Lemma
concludes the proof.

5. CONVERGENCE UNDER EMPIRICAL
SAMPLING

One term remains moot in the bound in Theorem 2, namely
the Wasserstein distance W2(µ,1P ). In this section, we
analyze its convergence. The rate depends on the complexity
of the measure µ, defined below. The moral of this section is
that if a measure can be well approximated with few points,
then it is also well approximated by random sampling.

Definition 4. The complexity of a probability measure µ
at a scale ε > 0 is the minimum cardinality of a finitely
supported probability measure ν which ε-approximates µ
in the Wasserstein sense, i.e. such that W2(µ, ν) ≤ ε. We
denote this number by Nµ(ε).

Observe that this notion is very close to the ε-covering
number of a compact set K, denoted by NK(ε), which counts
the minimum number of balls of radius ε needed to cover
K. It’s worth noting that if measures µ and ν are close —
as are the measure µ and its noisy approximation ν in the
previous section — and µ has low complexity, then so does
the measure ν. The following lemma shows that measures
satisfying the dimension assumption have low complexity.
Its proof follows from a classical covering argument, that can
be found e.g. in Proposition 4.1 of [15].

Lemma 3 (Dimension-Complexity). Let K be the sup-
port of a measure µ with dimµ ≤ `. Then,

(i) for every positive ε, NK(ε) ≤ αµ/ε
`. Said otherwise,

the upper box-counting dimension of K is bounded:
dim(K) := lim supε→0 log(NK(ε))/ log(1/ε) ≤ `.

(ii) for every positive ε, Nµ(ε) ≤ αµ5`/ε`.

Theorem 3 (Convergence). Let µ be a probability mea-
sure on Rd whose support has diameter at most D, and let P
be a set of N points independently drawn from the measure
µ. Then, ε > 0,

P(W2(1P , µ) ≤ 4ε) ≥ 1−Nµ(ε) exp(−2Nε2/(DNµ(ε))2)

− exp(−2Nε4/D2)

Proof. Let n be a fixed integer, and ε be the minimum
Wasserstein distance between µ and a measure µ̄ supported
on (at most) n points. Let S be the support of the optimal
measure µ̄, so that µ̄ can be decomposed as

∑
s∈S αsδs

(αs ≥ 0). Let π be an optimal transport plan between µ and
µ̄; this is equivalent to finding a decomposition of µ as a sum
of n non-negative measures (πs)s∈S such that mass(πs) = αs,
and ∑

s∈S

∫
‖x− s‖2dπs(x) = ε2 = W2(µ, µ̄)2

Drawing a random point X from the measure µ amounts to
(i) choosing a random point s in the set S (with probability
αs) and (ii) drawing a random point X following the distri-
bution πs. Given N independent points X1, . . . ,XN drawn
from the measure µ, denote by Is,N the proportion of the
(Xi) for which the point s was selected in step (i). Hoeffding’s
inequality allows to easily quantify how far the proportion
Is,N deviates from αs: P(|Is,N − αs| ≥ δ) ≤ exp(−2Nδ2).
Combining these inequalities for every point s and using the
union bound yields

P

(∑
s∈S

|Is,N − αs| ≤ δ

)
≥ 1− n exp(−2Nδ2/n2).

For every point s, denote by π̃s the distribution of the
distances to s in the submeasure πs, i.e. the measure on
the real line defined by π̃s(I) := πs({x ∈ Rd; ‖x− s‖ ∈ I})
for every interval I. Define µ̃ as the sum of the π̃s; by the
change of variable formula one has∫

R
t2dµ̃(t) =

∑
s

∫
R
t2dπ̃s =

∑
s

∫
Rd
‖x− s‖2dπs = ε2



Given a random point Xi sampled from µ, denote by Yi
Euclidean distance between the point Xi and the point s
chosen in step (i). By construction, the distribution of Yi is
given by the measure µ̃; using the Hoeffding inequality again
one gets

P

(
1

N

N∑
i=1

Y 2
i ≥ (ε+ η)2

)
≤ 1− exp(−2Nη2ε2/D2).

In order to conclude, we need to define a transport plan
from the empirical measure 1P = 1

N

∑N
i=1 δXi to the finite

measure µ̄. To achieve this, we order the points (Xi) by
increasing distance Yi; then transport every Dirac mass 1

N
δXi

to the corresponding point s in S until s is “full”, i.e. the mass
αs is reached. The squared cost of this transport operation
is at most 1

N

∑N
i=1 Y

2
i . Then distribute the remaining mass

among the s points in any way; the cost of this step is at most
D times

∑
s∈S |Is,N − αs|. The total cost of this transport

plan is the sum of these two costs. From what we have shown
above, setting η = ε and δ = ε/D, one gets

P(W2(1P , µ) ≤ 4ε) ≥ 1− n exp(−2Nε2/(Dn)2)

− exp(−2Nε4/D2)

As a consequence of the Dimension-Complexity Lemma 3
and of the Convergence Theorem 3, any measure µ satisfying
an upper bound on its dimension is well approximated by
empirical sampling. A result similar to the Convergence
Theorem follows when the samples are drawn not from the
original measure µ, but from a“noisy”approximation ν which
need not be compactly supported:

Corollary 1 (Noisy Convergence). Let µ, ν be two prob-
ability measures on Rd with W2(µ, ν) = σ, and P be a set of
N points drawn independently from the measure ν. Then,

P(W2(1P , µ) ≤ 9σ) ≥ 1−Nµ(σ) exp(−8Nσ2/(DNµ(σ))2)

− exp(−32Nσ4/D2).

Proof. One only needs to apply the previous Convergence
Theorem to the measures ν and 1P :

P(W2(ν,1P ) ≤ 4ε) ≥ 1−Nµ(ε) exp(−2Nε2/(DNν(ε))2)

− exp(−2Nε4/D2) (6)

Set ε = 2σ and recall that by definition Nν(2σ) ≤ Nµ(σ).
Then, using W2(1P , µ) ≤W2(1P , ν) + σ one has

P(W2(1P , µ) ≤ 9σ) ≥ P(W2(1P , ν) ≤ 8σ)

We conclude by using Eq. (6) with ε = 2σ.

It is now possible to combine Theorem 2 (Witnessed
Bound), Corollary 1 (Noisy Convergence) and Lemma 3
(Dimension-Complexity) to get the following probabilistic
statement.

Theorem 4 (Approximation). Suppose that µ is a mea-
sure satisfying the dimension assumption, supported on a set
K of diameter D, and ν a noisy approximation of µ, i.e.
W2(µ, ν) ≤ σ. Let P be a set of N points independently
sampled from ν. Then, the inequality

‖dw
P,k − dK‖∞ ≤ 54m

−1/2
0 σ + 24m

1/`
0 α−1/`

µ

holds with probability at least

1− γµ exp(−βµN max(σ2+2`, σ4)− ` ln(σ)),

where βµ = 1
D2 max

[
8

(αµ5`)2
, 32
]

and γµ = 1 + αµ5`.

Proof. Thanks to the Witnessed Bound Theorem and
the Noisy Convergence Corollary, the inequality holds with
probability at least:

1−Nµ(σ) exp(−8Nσ2/(DNµ(σ))2)− exp(−32Nσ4/D2)

We use Lemma 3 to lower bound the covering number Nµ(σ)
by αµ5`/σ`. Hence, the previous expression is bounded from
below by

1− αµ5` exp(−8Nσ2+2`/(Dαµ5`)2

− ` ln(σ))− exp(−32Nσ4/D2)

≥ 1− γµ exp(−βµN max(σ2+2`, σ4)− ` ln(σ))

where γµ = 1 + αµ5` and βµ = 1
D2 max

[
8

(αµ5`)2
, 32
]
, as

stated in the theorem.

6. DISCUSSION
We illustrate the utility of the bound in the Witnessed

Bound Theorem by example and an inference statement. Fig-
ure 1 shows 6000 points drawn from the uniform distribution
on a sideways figure-8 (in red), convolved with a Gaussian
distribution. The ordinary distance function to the point
set has no hope of recovering geometric information out of
these points since both loops of the figure-8 are filled in.
On the right, we show the sublevel sets of the distance to
the uniform measure on the point set, both the witnessed
k-distance and the exact k-distance. Both functions recover
the topology of figure-8, the bits missing from the witnessed
k-distance smooth out the boundary of the sublevel set, but
do not affect the image at large.

Inference. Suppose that we are in the conditions of the
Approximation Theorem, but additionally we assume that
the support K of the original measure µ has a weak feature
size larger than R. This means that the distance function dK
has no critical value in [0, R], and implies that all the offsets
Kr = d−1

K [0, r] of K are homotopy equivalent for r ∈ (0, R).
Suppose again that we have drawn a set P of N points from
a Wasserstein approximation ν of µ, such that W2(µ, ν) ≤ σ.
From the Approximation Theorem, we have

‖dw
P,k − dK‖∞ ≤ e(m0) := 54m

−1/2
0 σ + 24m

1/`
0 α−1/`

µ

with high probability as N goes to infinity. Then, the stan-
dard argument [8] shows that the Betti numbers of the
compact set K can be inferred from the function dw

P,k, which
is defined only from the point sample P , as long as e(m0) is
less than R/4. Indeed, denoting by Kr and P r the r-sublevel
sets of the functions dK and dw

P,k, the sequence of inclusions

K0 ⊆ P e(m0) ⊆ K2e(m0) ⊆ P 3e(m0) ⊆ K4e(m0)

holds with high probability. By assumption the function
dK has no critical values in the range (0, 4e(m0)) ⊆ (0, R).
Therefore, the rank of the image on the homology induced
by inclusion H(P e(m0))→ H(P 3e(m0)) is equal to the Betti
numbers of the set K. In the language of persistent homol-
ogy [13], the persistent Betti numbers β(e(m0),3e(m0)) of the
function dw

P,k are equal to the Betti numbers of the set K.
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Figure 2: (PL-approximation of the) 1-dimensional persistence vineyard of the witnessed k-distance function.
Topological features of the space, obscured by noise for low values of m0, stand out as we increase the mass
parameter.

Choice of the mass parameter. This language also sug-
gests a strategy for choosing a mass parameter m0 for the
distance to a measure, a question that has not been addressed
by the original paper [5]. For every mass parameter m0, the
p-dimensional persistence diagram Persp(dµ,m0) is a set of
points {(bi(m0), di(m0))}i in the extended plane (R∪{∞})2.
Each of these points represents a homology class of dimension
p in the sublevel sets of dµ,m0 ; bi(m0) and di(m0) are the
values at which it is born and dies. Since the distance to
measure d1P ,m0 depends continuously on m0, by [8] so do its
persistence diagrams. Thus, one can use the algorithm in [9]
to track their evolution. Figure 2 illustrates such a construc-
tion for the point set in Figure 1 and the witnessed k-distance.
It displays the evolution of the persistence (d1(m0)− b1(m0))
of each of the 1-dimensional homology classes as m0 varies,
thus highlighting the choices of the mass parameter that lead
to the presence of the two prominent classes (corresponding
to the two loops of the figure-8).
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