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Abstract
When persistence diagrams are formalized as the Möbius inversion of the birth–death function, they
naturally generalize to the multi-parameter setting and enjoy many of the key properties, such as
stability, that we expect in applications. The direct definition in the 2-parameter setting, and the
corresponding brute-force algorithm to compute them, require Ω(n4) operations. But the size of the
generalized persistence diagram, C, can be as low as linear (and as high as cubic). We elucidate
a connection between the 2-parameter and the ordinary 1-parameter settings, which allows us to
design an output-sensitive algorithm, whose running time is in O(n3 + Cn).
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1 Introduction

An ordinary 1-parameter persistence diagram has a remarkable number of equivalent
definitions: via persistent homology groups [9], as indecomposable summands of persistence
modules [23, 4], via well groups [1] or persistence landscapes [3], and as the Möbius inversion
of the rank invariant [20], to name a few. But extending these to the multi-parameter setting
leads to very different objects with wildly different properties [5, 10, 22, 15, 18].

The latter definition, although implicitly recognized in the inclusion–exclusion formula
used in the original proof of stability [6] and in size theory [11], received no attention until
recently, when Patel et al. [20, 17, 18] began the investigation of the generalized persistence
diagram, formalized as the Möbius inversion of the rank function and the closely related
birth–death function [12, 13]. This definition has a number of convenient properties. The
generalized persistence diagram is a set of integer-weighted intervals of the underlying poset,
allowing for direct adaptation of applications that rely on having such a structure. It is also
stable [18] in a sense that generalizes the bottleneck stability of 1-parameter persistence [6],
and its construction is functorial [18].

A question that remains open is how to efficiently compute the generalized persistence
diagram. It is unclear how to take advantage of existing work. Computing indecomposable
summands [8] doesn’t give a generalized persistence diagram, except in special cases [2].
Computing a minimal presentation of a module [16, 14] ought to help in general, although
not in the specific setting described in this paper.

We consider the case of the 2-filtration. It’s possible to use the definition of the Möbius
inversion directly as an algorithm (expressed below as Corollary 6). This formulation has
16 ·n4 terms, when the input 2-filtration has n simplices, and relies on the ability to compute
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the rank of any map between a pair of homology groups in the 2-filtration. An O(n4)
algorithm for the latter task is given, for example, in [19, Section 4.4.2]. Together the two
observations lead to an O(n4) algorithm [2]. Unfortunately, because it has to examine all
intervals in the 2-filtration, the algorithm is also in Ω(n4).

On the other hand, a generalized persistence diagram can be very sparse. Its support,
i.e., the number of non-zero intervals, can be as low as n, for example, if any monotone path
through the 2-filtration gives the same ordering of simplices. We use C to denote the number
of non-zero intervals, the size of the output in our problem.

Our contributions are two-fold. After recapping the necessary background in Sections 2
and 3, we establish a connection, in Section 4, between the non-zero intervals in the Möbius
inversion and the pairing switches [7] between simplices along four paths through the 2-
filtration. In Section 5, we develop an algorithm for computing the generalized persistence
diagram that traverses the 2-filtration via a sequence of paths by performing transpositions of
adjacent simplices. It maintains extended pairing information (that we call the birth curves),
which allows us to compute all the intervals in the output-sensitive O(n3 + Cn) time.

2 Background

Möbius inversion. Let P be any finite poset. For every pair of elements a,b ∈ P, the
interval [a,b] is the set {x ∈ P : a 6 x 6 b}. The set of all intervals IntP is a poset, where
[a,b] 6 [c,d] whenever a 6 c and b 6 d. The Z-incidence algebra on P, denoted Inc(P), is
the set of all integral functions α : IntP → Z along with two binary operations:

(α+ β)[a,b] = α[a,b] + β[a,b]

(α ∗ β)[a,b] =
∑

a6x6b

α(a, x)β(x,b).

The additive identity is the zero function, and the multiplicative identity is the delta function
defined as δ[a,b] = 1 if a = b and 0 otherwise. We are interested in two special functions in
Inc(P): the zeta function and the Möbius function [21]. The zeta function is the function
ζ[a,b] = 1 for all a 6 b and 0 otherwise. The multiplicative inverse of the zeta function is
the Möbius function µ, which can be described inductively as follows:

µ[a,b] =


1 for a = b

−
∑

x:a6x<b µ[a, x] for a < b
0 otherwise.

(1)

Given a function f : IntP → Z, there is a unique function g : IntP → Z such that

f[c,d] =
∑

[a,b]:[a,b]6[c,d]
g[a,b].

This unique function g is called the Möbius inversion of f and can be defined as

g[c,d] =
∑

[a,b]:[a,b]6[c,d]
f[a,b] · µ

(
[a,b], [c,d]

)
. (2)

1-Filtrations. Fix a finite simplicial complex K, and let ∆K be the poset of all subcomplexes
of K ordered by inclusion. Let Pn be the totally ordered poset {0 < 1 < · · · < n}. A
1-filtration of K is a monotone map F : Pn → ∆K such that F(0) = ∅ and F(n) = K.
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We now describe the persistence diagram of F as a Möbius inversion, which is equivalent
to the classical persistence diagram; see [18]. Fix a field k . For each dimension d, denote by
Cd(K) the k -vector space generated by the set of d-simplices in K. For every a ∈ Pn, denote
by ZdF(a) ⊆ Cd(K) the subspace of d-cycles in F(a) and by BdF(a) ⊆ Cd(K) the subspace
d-boundaries in F(a). The birth–death function of the 1-filtration F is the monotone integral
function ZBdF : IntPn → Z that assigns to every interval [a,b], where b 6= n, the dimension
of the vector space ZdF(a) ∩ BdF(b) and to every interval [a,n], the dimension of ZdF(a).

I Definition 1. The d-th persistence diagram of the 1-filtration F is the Möbius inversion,
denoted DgmdF, of the birth–death function ZBdF.

Below, we suppress both the filtration F and the dimension d from the notation, when
they are clear from context. For i ∈ {0, 1}, define #i = i mod 2. The following lemma
follows from Equation (1).

I Lemma 2. The Möbius function µ ∈ Inc(Pn) is particularly nice. For every non-empty
interval [c,d] ∈ IntPn,

µ
(
[a,b], [c,d]

)
=

{
(−1)#i · (−1)#j if ∃i, j ∈ {0, 1} : [a,b] = [c− i,d− j]

0 otherwise

The following corollary is an immediate consequence of Equation (2) and Lemma 2.

I Corollary 3. For an interval [a,b] ∈ IntPn,

DgmdF[a,b] =
∑

i,j∈{0,1}
(−1)#i · (−1)#j · ZBdF[a− i,b− j]

=
∑

i,j∈{0,1}
(−1)#i · (−1)#j ·

(
ZBdF[a− i,b− j] − ZBdF[a− 1,b− 1]

)
.

If the interval [a− i,b− j] does not exist, then we interpret ZBdF[a− i,b− j] as zero.

2-Filtrations. Let Ln := Pn × Pn be the product poset where a = (a1,a2) 6 b = (b1,b2)
whenever a1 6 b1 and a2 6 b2. A 2-filtration of a simplicial complex K is a monotone map
G : Ln → ∆K such that G(0, 0) = ∅ and G(n,n) = K.

We now describe the (generalized) persistence diagram of G as a Möbius inversion. For
each dimension d, denote by Cd(K) the k -vector space generated by the set of d-simplices
in K. For every a ∈ Ln, denote by ZdG(a) ⊆ Cd(K) the subspace of d-cycles in G(a) and
denote by BdG(a) ⊆ Cd(K) the subspace d-boundaries in G(a). The birth–death function of
the 2-filtration G is the monotone integral function ZBdG : IntLn → Z that assigns to every
interval [a,b], where b 6= (n,n), the dimension of the vector space ZdG(a) ∩ BdG(b) and to
every interval [a, (n,n)], the dimension of ZdG(a).

I Definition 4. The d-th persistence diagram of the 2-filtration G is the Möbius inversion,
denoted DgmdG, of the birth–death function ZBdG.

For i = (x,y) ∈ {0, 1}2, define #i = (x + y) mod 2. The following lemma follows from
Equation (1).

I Lemma 5. The Möbius function µ ∈ Inc(Ln) is particularly nice. For every non-empty
interval [c,d] ∈ IntLn,

µ
(
[a,b], [c,d]

)
=

{
(−1)#i · (−1)#j if ∃i, j ∈ {0, 1}2 : [a,b] = [c− i,d− j]

0 otherwise
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The following corollary is a consequence of Equation (2) and Lemma 5.

I Corollary 6. For an interval [a,b] ∈ IntLn,

DgmdG[a,b] =
∑

i,j∈{0,1}2

(−1)#i · (−1)#j · ZBdG[a− i,b− j]

=
∑

i,j∈{0,1}2

(−1)#i · (−1)#j ·
(
ZBdG[a− i,b− j] − ZBdG[a− (1, 1),b− (1, 1)]

)
.

If the interval [a− i,b− j] does not exist, then we interpret ZBdG[a− i,b− j] as zero.

Transpositions. Fix a 1-filtration F : Pn → ∆K and assume that for every adjacent pair of
subcomplexes, the difference F(i)−F(i−1) is empty or a single simplex σi. Given the boundary
matrix D of K, with rows and columns ordered by the 1-filtration, the standard persistence
algorithm [9] finds a factorization [7], R = DV, where R is reduced, meaning the lowest
non-zero entries in its columns appear in unique rows, and V is invertible upper-triangular.
The lowest non-zeros in matrix R give the persistence pairing: for j 6= n, Dgm[i, j] = 1 iff
R[i, j] 6= 0 and R[i ′, j] = 0 ∀ i ′ > i; for j = n, Dgm[i,n] is the number of zero columns i
(such that R[·, i] is 0) minus the number of non-zero columns j (such that ∃i,R[i, j] 6= 0).
Whenever Dgm[i, j] 6= 0, we say σi is paired with σj and that σi is positive and σj is negative.
Two pairs (σi,σj) and (τk, τl) are nested if [i, j] is contained in [k, l]. They are disjoint if
[i, j] ∩ [k, l] = ∅.

Cohen-Steiner et al. [7] (see also [19]) study what happens to the pairing when we
transpose two simplices in the 1-filtration F. They analyze how the decomposition R = DV

may fail to satisfy the requirement that R is reduced and V is invertible upper-triangular,
and show that this property can be restored, following a single transposition, in linear time.
Appendix A briefly recaps the details of the updates. The following lemma is a consequence
of their analysis.

I Lemma 7 ([7]). The pairing of two transposing simplices can switch only if before the
transposition their pairing is either nested, or disjoint. (If the switch occurs, the pairing
remains nested or disjoint after the transposition.)

The contrapositive of this statement is an important shortcut that we use below: if the
pairing of two transposing simplices is neither nested, nor disjoint, it will not change after
the transposition.

3 Preliminaries

A 2-filtration F : Ln → ∆K is 1-critical 1 if (1) for every σ ∈ K, there is a unique a ∈ Ln
where σ first appears, and (2) if σ and τ appear at (a1,a2), (b1,b2) ∈ Ln, respectively, then
a1 6= b1 and a2 6= b2.

A step in a 2-filtration is a pair of adjacent grades, i.e., grades that differ by 1 in a single
position: (i, j)→ (i+ 1, j), or (i, j)→ (i, j+ 1). A sequence of increasing grades, starting at
(0, 0) and ending at (n,n) through a sequence of 2n steps is a (monotone) path P2n+1 → Ln.
A path through Ln induces a 1-filtration of simplices p : P2n+1 → ∆K by composing with F.
Each simplex is added to the 1-filtration p at a unique step of the path.

1 We assume 1-criticality to simplify the exposition, deferring the extra case analysis to the full paper.1
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F[(a1 − 1,a2 − 1)]
F[(a1,a2 − 1)]

F[(a1 − 1,a2)]
F[(a1,a2)]

F[(b1 − 1,b2 − 1)]
F[(b1,b2 − 1)]

F[(b1 − 1,b2)]
F[(b1,b2)]

Figure 1 Four 1-dimensional paths through the 2-filtration involved in the analysis.2

I Lemma 8 (Path Invariance). Given a path p, if simplex σ is added to the filtration at step
(i, j)→ (i+ δi, j+ δj) and simplex τ is added to the filtration at step (k, l)→ (k+ δk, l+ δl),
and σ and τ are paired in the filtration, then they are paired in every filtration given by any
path taking these two steps.

Proof. Let K1 denote the complex at grade (i, j), K2 = K1 ∪ {σ} denote the complex at grade
(i+ δi, j+ δj), K3 denote the complex at grade (k, l), K4 = K3 ∪ {τ} denote the complex at
grade (k + δk, l + δl). Then any filtration given by a path through the two steps in the
statement of the lemma, has the following form: K1 ⊆ K2 ⊆ K3 ⊆ K4. From Corollary 3, σ
and τ are paired iff

dim(ZK2 ∩ BK4) − dim(ZK1 ∩ BK4) − dim(ZK2 ∩ BK3) + dim(ZK1 ∩ BK3) = 1.

In other words, the pairing is independent of the order of simplices in K1 and K3 − K2. J

Interval notation. To simplify exposition, we use the following notation for the endpoints
of intervals in the 2-filtration:

a
•

= (a1 − 1,a2) a
•
= (a1,a2)

a
•

= (a1 − 1,a2 − 1) a
•
= (a1,a2 − 1)

A pair of endpoints define an interval, for example, a
•

b
•
= ((a1 − 1,a2), (b1,b2 − 1)).

When there is no ambiguity, we overload the notation and use an interval to refer to the value

of the birth–death function on it, for example, a
•

b
•
= ZBdF((a1 − 1,a2), (b1,b2 − 1)).

4 Möbius Inversion from Transpositions

To compute the persistence diagram Dgm[a,b] for a 2-filtration F, it suffices, by Corollary 6,
to consider any four 1-dimensional paths through the 2-filtration that go through the spaces
F[a− i,b− j] for i, j ∈ {0, 1}2; see Figure 1. If the birth–death function does not change along
two parallel sides of either square, then Dgm[a,b] = 0. The following corollary makes this
observation precise.

I Corollary 9. If
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3 ZBdF((a1 − 1,a2 − j),b− (k, l)) = ZBdF((a1,a2 − j),b− (k, l)) for j, k, l ∈ {0, 1}, or
4 ZBdF((a1 − i,a2 − 1),b− (k, l)) = ZBdF((a1 − i,a2),b− (k, l)) for i, k, l ∈ {0, 1}, or
5 ZBdF(a− (i, j), (b1 − 1,b2 − l)) = ZBdF(a− (i, j), (b1,b2 − l)) for i, j, l ∈ {0, 1}, or
6 ZBdF(a− (i, j), (b1 − k,b2 − 1)) = ZBdF(a− (i, j), (b1 − k,b2)) for i, j,k ∈ {0, 1},

then Dgmd[a,b] = 0.

Proof. Suppose

ZBdF((a1 − 1,a2 − j),b− (k, l)) = ZBdF((a1,a2 − j),b− (k, l))

for all j,k, l ∈ {0, 1}. Substituting into Corollary 6, we get

Dgmd[a,b] =
∑

i,j∈{0,1}2

(−1)#i · (−1)#j · ZBdF[a− i,b− j]

=
∑

j∈{0,1}2

(−1)#j
∑

i∈{0,1}2

(−1)#i · ZBdF[a− i,b− j]

=
∑

j∈{0,1}2

(−1)#j

((
a
•
b− j

•
− a
•

b− j
•)

+

(
a
•

b− j
•
− a
•
b− j

•))
= 0.

The other three statements follow analogously. J

If the cycle space doesn’t change along two parallel sides of the lower square or the
boundary space doesn’t change along two parallel sides of the upper square in Figure 1, then
neither does the birth–death function, and we are in the setting of the previous corollary.

I Corollary 10. If

7 ZdF(a1 − 1,a2 − j) = ZdF(a1,a2 − j) for j ∈ {0, 1}, or
8 ZdF(a1 − i,a2 − 1) = ZdF(a1 − i,a2) for i ∈ {0, 1}, or
9 BdF(b1 − 1,b2 − j) = BdF(b1,b2 − j) for j ∈ {0, 1}, or

10 BdF(b1 − i,b2 − 1) = BdF(b1 − i,b2) for i ∈ {0, 1},

then Dgmd[a,b] = 0.

It follows that the only way for Dgm[a,b] to be non-zero is for both a and b to be either
the grades where new simplices enter the 2-filtration, or the grades where a pair of simplices
appear together for the first time.

Suppose that a is the grade where two simplices σ and τ appear for the first time together.
Then the following lemma states that for a to be an end-point of a non-zero interval in Dgm,
there must exist two 1-dimensional paths around a (i.e., differing only by a transposition of
σ and τ) such that the pairing of the two simplices switches between the two paths.

I Lemma 11. If a is the grade where simplices σ and τ appear for the first time together,
and if for any two paths through the 2-filtration that differ by a transposition of σ and τ, the
pairing of the two simplices does not switch, then

Dgm[a, ·] = 0 and Dgm[·,a] = 0.

Proof. Suppose a = (a1,a2) and assume, without loss of generality, σ appears at (·,a2),

and τ at (a1, ·). Suppose that for any path around a (i.e., that passes through a
•

and a
•
)
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simplex σ is positive. From the 1-dimensional case, we know that if for any two paths around
a simplex σ has the same pairing, then for any b = (b1,b2), we have:

a
•
b
•
− a
•
b
•
− a
•
b
•

+ a
•
b
•

= a
•

b
•
− a
•

b
•
− a
•

b
•

+ a
•

b
•

.

Subtracting the two sides of the equality and adding up the terms for b = (b1,b2) and
b = (b1,b2 − 1), we get the 16 terms from Corollary 6:

Dgm[a,b] =
((

a
•
b
•
− a
•
b
•
− a
•
b
•

+ a
•
b
• )

−

(
a
•

b
•
− a
•

b
•
− a
•

b
•

+ a
•

b
• ))

−

((
a
•
b
•
− a
•
b
•
− a
•
b
•

+ a
•
b
•

)
−

(
a
•

b
•
− a
•

b
•
− a
•

b
•

+ a
•

b
•

))
= 0.

The case when σ is negative is proved analogously. J

Local diagrams. We consider all possibilities that can occur along the four paths around
two grades, a and b. In all the figures in this section we use diagrams that describe the
local ranks

(
ZBdF[a− i,b− j] − ZBdF[a− 1,b− 1]

)
involved in the definition of Dgm[a,b]

in Corollary 6. Figure 2 explains how the sixteen ranks are arranged in the four squares. In
words, the larger squares are indexed by i, i.e., they traverse the neighborhood of a. The
numbers within each square are indexed by j, i.e., they traverse the neighborhood of b.

a
•

b
•
= ZBdF a

•
b
•
− ZBdF a

•
b

•

a
•

b
•

a
•

b
•

a
•

b
•

a
•

b
•

a
•

b
•

a
•

b
•

a
•

b
•

a
•

b
•

a
•
b

•
a
•
b
•

a
•
b

•
a
•
b
•

a
•
b

•
a
•
b
•

a
•
b

•
a
•
b
•

Figure 2 Definition of ranks in the local diagrams used in the rest of the figures in this section.11

σ and τ. Suppose that a is the grade where simplex σ enters the 2-filtration, and b is the
grade where simplex τ enters the 2-filtration; see Figure 3. If σ and τ are paired along some
1-dimensional path through the 2-filtration (and therefore, by Lemma 8, along any such
path), then Dgm[a,b] = +1. The diagram on the right of Figure 3 shows the ranks involved
in Corollary 6, arranged as shown in Figure 2.

If σ and τ are not paired along a 1-dimensional path, then all the entries in the local
diagram would be 0, and so Dgm[a,b] = 0.

σ and τ1, τ2. Suppose that a is the grade where simplex σ enters the 2-filtration, while
grade b is the first time simplices τ1 and τ2 appear together in the 2-filtration (i.e., without
loss of generality, the grade of τ1 is (·,b2), while the grade of τ2 is (b1, ·)); see Figure 4.
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σ

τ

σ-τ paired along a path

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

σ

MI = +1
a

b

Figure 3 a and b are grades where simplices σ and τ appear.12

If σ is paired with either one of the two simplices and the pairing switches, there are two
possibilities: either σ is paired with whichever simplex τ1 or τ2 comes first, or with whichever
one comes second. In the former case, Dgm[a,b] = −1; in the latter case, Dgm[a,b] = +1.
The ranks involved in this computation are shown in the two local diagrams on the right of
Figure 4.

If σ is paired with neither τ1, nor τ2, then all the entires in the local diagrams would be
0. If σ is paired with the same τ1 or τ2 along the two paths around b, then we are in the
setting of Corollary 9. In either case, Dgm[a,b] = 0.

σ

τ1

σ paired with τ1 or τ2

1 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

σ

MI = −1

τ2

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

σ

MI = +1

whichever comes first whichever comes last

a

b

Figure 4 a is the grade where simplex σ appears, and b is the grade where simplices τ1 and τ2
appear for the first time.

13

14

σ1,σ2 and τ. Suppose that grade a is the first time simplices σ1 and σ2 appear together in
the 2-filtration, while b is the grade where simplex τ enters the 2-filtration; see Figure 5.

If τ is paired with either of the two simplices and the pairing switches, there are two
possibilities: either τ is paired with whichever simplex comes first, or whichever comes second.
In the former case, Dgm[a,b] = −1; in the latter case, Dgm[a,b] = +1. The ranks involved
in this computation are shown in the two local diagrams on the right of Figure 5.

If τ is paired with neither σ1, nor σ2, then all the entries in the local diagrams would be
0. If τ is paired with the same σi along the two paths around a, then we are in the setting
of Corollary 9. In either case, Dgm[a,b] = 0.
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σ1

τ

τ paired with σ1 or σ2

0 1

0 0

0 1

0 0

0 0

0 0

0 1

0 0

σ1

MI = −1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

MI = +1

whichever comes first whichever comes last

σ2

σ2 σ2

σ1

a

b

Figure 5 a is the grade where simplices σ1 and σ2 appear for the first time, and b is the grade
where simplex τ appears.

15

16

σ1,σ2 and τ1, τ2. Suppose that grade a is the first time simplices σ1 and σ2 appear together
in the 2-filtration, while grade b is the first time simplices τ1 and τ2 appear together in the
2-filtration; see Figure 7.

If neither of those simplices are paired along any of the four 1-dimensional paths, then
all the ranks involved in Corollary 6 are zero. If only one of the simplices σ1,σ2 is paired
with one of the simplices τ1, τ2, then the only possibilities are illustrated in Figure 6. In all
of these cases, the pairing has to switch for every one of the four possible transpositions,
otherwise, one of the simplices doesn’t participate in the pairing, and we end up in the setting
of Corollary 9, meaning Dgm[a,b] must be 0. This is the reason why the figure illustrates
only one pairing per case.

σ1

τ1

σ2

τ2

a

b

1 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

σ1

MI = −1

σ2

σiσj τi τj

1 1

0 1

1 1

0 1

0 0

0 0

1 1

0 1

σ1

MI = +1

σ2

σiσj τi τj

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

σ1

MI = +1

σ2

σiσj τi τj

0 1

0 0

0 1

0 0

0 0

0 0

0 1

0 0

σ1

MI = −1

σ2

σiσj τi τj

Figure 6 a is the grade where simplices σ1 and σ2 appear for the first time, and b is the grade
where simplices τ1 and τ2 appear for the first time. One of σ1,σ2 is paired with one of τ1, τ2.
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The only remaining possibilities are that σ1 and σ2 are paired with τ1 and τ2, and the
pairing switches at least once as we go between the four paths. Figure 7 illustrates the five
possibilities, together with their local diagrams and the resulting values of Dgm[a,b]. We
note that in the four cases that include pairing that is neither nested, nor disjoint along one
of the four paths, the pairing along the two paths that are one transposition away is forced
by Lemma 7. The pairing in the fourth path is forced by the assumption that the pairing
switches somewhere.

We also note that the first case in the figure is generic (more on that in the next section),
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and results in Dgm[a,b] = −2.
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1 2
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0 0
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0 0
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MI = −2

σ2

σ2
τ2

σ1σ2 τ1 τ2

σ2σ1 τ1 τ2

σ1σ2 τ2 τ1

σ2σ1 τ2 τ1

1 2

0 1

0 1

0 1

0 0

0 0

0 1

0 0

σ1

MI = −1

σ2

σ1σ2 τ1 τ2

σ2σ1 τ1 τ2

σ1σ2 τ2 τ1

σ2σ1 τ2 τ1

1 2

0 1

0 1

0 0

0 0

0 0

0 1

0 1

σ1

MI = −1

σ2

σ1σ2 τ1 τ2

σ2σ1 τ1 τ2

σ1σ2 τ2 τ1

σ2σ1 τ2 τ1

a

b

1 2

0 1

1 1

0 0

0 0

0 0

0 1

0 0

σ1

MI = −1

σ2

σ1σ2 τ1 τ2

σ2σ1 τ1 τ2

σ1σ2 τ2 τ1

σ2σ1 τ2 τ1

1 2

0 1

0 1

0 0

0 0

0 0

1 1

0 0

σ1

MI = −1

σ2

σ1σ2 τ1 τ2

σ2σ1 τ1 τ2

σ1σ2 τ2 τ1

σ2σ1 τ2 τ1

Figure 7 a is the grade where simplices σ1 and σ2 appear for the first time, and b is the grade
where simplices τ1 and τ2 appear for the first time. σ1,σ2 and τ1, τ2 are all paired among themselves.
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σ and τ, paired disjointly. Suppose grade b is the first time simplices σ and τ appear
together in the filtration, and if we consider any two 1-dimensional paths around b, then the
first simplex to appear along the path is paired down, while the second one is paired up (and
accordingly the pairing switches for any two such paths); see Figure 8.

There are several possibilities, depending on the combinatorics of the paths around the
pairs of σ and τ. Figure 8 shows one such possibility, namely when there exist grades a and
c, where simplices α and β enter the 2-filtration, and the first of σ or τ is paired down with
α, while the second one is paired up with β. We have already analyzed this situation in
Figures 4 and 5, but the relevant local diagrams are reproduced in Figure 8. The resulting
pairing is Dgm[a,b] = −1 and Dgm[b, c] = +1.

The other possibilities have analysis very similar to that in Figure 7, and we only list the
results. Suppose a is the grade where two simplices α1 and α2 appear for the first time. If
along the four paths around a and b, the first of αi is paired with the first of σ or τ, then
Dgm[a,b] = +1. If the last of αi is paired with the first of σ or τ, then Dgm[a,b] = −1.

Suppose c is the grade where two simplices β1 and β2 appear for the first time. If along
the four paths around b and c, the second of σ and τ is paired with the first of βi, then
Dgm[a,b] = −1; if it’s paired with the second of βi, then Dgm[a,b] = +1.

Summary. In all cases, except for the last four in Figure 7, the value of the interval in
the persistence diagram, Dgm[a,b], can be summarized as in Figure 9. In words, if the last
simplex around the corner is involved in the pairing switch, we get a multiple of +1; if it is
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σ

τ

the first of σ and τ kills, the second creates

1 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

α

MI = −1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

MI = +1

w.r.t. [a,b] w.r.t. [b, c]

α

τ

σ
β

a

b

c

Figure 8 b is the grade where simplices σ and τ appear for the first time. For any 1-dimensional
path around b; the first one of them is paired down, while the second one is paired up.
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the first simplex, we get a multiple of −1. The product of the two multiples gives us the
value on the interval.

a

b

MI = +1
a

b

MI = −1
a

b

MI = +1
a

b

MI = −1

Figure 9 The summary of the interval value, given the pairing around the two corners.23

We note that the first case in Figure 7 is really the sum of the two possibilities that give
the value of −1: the first simplex of σ1,σ2 is paired with the last of τ1, τ2, and vice versa.
The last four cases in Figure 7 don’t fit into this neat summary, but they play an essential
role in the algorithm in the next section.

5 Algorithm

We use the observations in the previous section to devise an algorithm that tracks the changes
in pairing along 1-dimensional paths through the 2-filtration and identifies all intervals in
the support of the generalized persistence diagram; its high-level overview is in Appendix B.

Birth curves. An antichain is a set of pairwise incomparable grades in the 2-filtration. An
upset of an antichain is the set of all grades greater or equal to some grade in the antichain.
We note that each path through a 2-filtration enters an upset of any antichain at a unique
step.

Suppose step (k− δk, l− δl)→ (k, l) in the 2-filtration adds a negative simplex τ. Then
the birth curve of τ at this step is an antichain c such that if a path p through this step
enters the upset of the antichain c at step (i− δi, j− δj)→ (i, j), then a simplex σ is added
along p at step (i+ j) and σ and τ are paired in the 1-dimensional filtration induced by the
path. Lemma 8 implies that birth curves are well-defined: if σ and τ are paired along one
path through the two steps, then they are paired along every path through them.

Our algorithm sweeps the 2-filtration and tracks birth curves of negative simplices. For
each birth curve, we refer to the grades that define the antichain as its lower corners, i.e.,
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(0, 0) (i− 1, 0)

(i− 1, j− 1) (i, j− 1)

(i− 1, j) (i, j)

(0,n) (n,n)

(n, 0)

(i,n)

Figure 10 Path traversal starts with the path along the left and top edges of the 2-filtration, and
through a sequence of elementary steps (one of which around (i, j) is shown in the figure) reaches
the path along the bottom and right edge of the 2-filtration.

24

25

26

these are the minimal grades in its upset. An upper corner is any grade (i, j) in the upset,
such that (i− 1, j) and (i, j− 1) are also in the upset, but (i− 1, j− 1) is not.

Path traversal. We start with a path along the left and top edge of the 2-filtration,
(0, 0) . . . (0,n) . . . (n,n). The filtration that we get from this path is the same as if we sorted
all the simplices by the first coordinate of their grade. We compute persistence R = DV

for this filtration. To simplify exposition, for every unpaired simplex σ, we add an implicit
negative cell σ̂ at grade (n+ 1,n+ 1), with R[σ̂] = D[σ̂] = σ and V[σ̂] = σ̂.

We sweep through the paths of the following form, (0, 0) . . . (i− 1, 0) . . . (i− 1, j), (i, j)
. . . (i,n) . . . (n,n), transitioning one square at a time, by replacing (i−1, j−1), (i−1, j), (i, j)
with (i − 1, j − 1), (i, j − 1), (i, j); see Figure 10. As we perform such elementary steps, we
build up the birth curves and report all the non-zero intervals in the diagram whose upper
endpoint is in grade (i, j).

Invariant. We maintain the following invariant, necessary to verify the correctness of each
step and the running time claim. We emphasize in Section 5.1 the key parts of the matrix
updates that maintain it.

1. Each negative simplex τ along the current path (in the sense of Figure 10) maintains
a birth curve, stored as a set of grades that represent its lower corners (by definition,
all are below the grade of τ’s appearance along the path). For each lower corner a, we
maintain three chains, R[τ],V[τ],V[σ], such that R[τ] and V[σ] are cycles that appear in
the complex F(a), but not in any complex F(a ′) with a ′ < a, and R[τ] = D · V[τ].

2. Any path that reaches the current grade (i, j) and then proceeds to grade (i,n) and
then (n,n) induces a 1-filtration. Assembling the columns R[τ],V[τ],R[σ] = 0,V[σ] that
are stored at the lower corners below the grades at which the path enters the upsets
of the birth curves — ordering all such columns with respect to the path — we get
decomposition R = DV that satisfies the reduction assumptions (R is reduced, V is
invertible upper-triangular).

3. If for a set of simplices along a path, . . .σ . . . τ . . .α . . .β . . ., the pairing is neither nested
nor disjoint — σ paired with α, and τ paired with β — we ensure that V[α,β] = 0. (This
condition is satisfied by the original algorithm [9], and although the prior work [7, 19]
does not deliberately maintain this property, we explain in Appendix A the necessary
extra update, and call it out in the text accompanying Figure 11.)
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5.1 Updates
As we update the path, shifting it around the square (i, j), it is possible that (i, j) is the grade
where some simplex σ enters the 2-filtration for the first time. In other words, σ appears
in both paths at step (i + j). If σ is positive, we mark (i, j) as a lower corner of its pair’s
birth curve. If σ is negative, let birth(σ) be its birth curve, l(birth(σ)) be the grades of its
low corners and u(birth(σ)), the grades of its upper corners. We output Dgm[a,b] = +1 for
all a ∈ l(birth(σ)) and b = (i, j), and we output Dgm[a,b] = −1 for all a ∈ u(birth(σ)) and
b = (i, j). (The relevant analysis appears in Figures 3 and 5 in the previous section and the
accompanying text.)

It is possible that no change happens between the two paths, for example, because the
two relevant simplices σ at grade (i,k) and τ at grade (l, j) are nested, i.e., (i,k) < (l, j). In
this case, there is nothing to update: the two paths induce the same filtration. The only
situation that deserves our attention is if k < j and l < i. (Recall that we assume the grade
of each simplex is distinct in each coordinate.) In the remainder of this section, we analyze
all possible scenarios involving such σ and τ.

σ and τ are both paired up. Suppose σ is paired with α, and τ is paired with β. If β
comes first, then by Lemma 7 pairing of σ and τ cannot switch between the two paths. It
is, however, possible that the columns of R[α], V[α], V[σ], and R[β], V[β], V[τ] need to be
updated between the two paths. Such an update can be performed in linear time [7]; see
Appendix A.

We note that the update of columns V[σ] and V[τ] is crucial in this case. It ensures
that if V[σ] contains τ before the transposition, then it doesn’t after the transposition. This
ensures correctness of Item 1 in the invariant: column V[σ] contains only simplices present
at the lower corner that stores it — a corner yet to be reached in this case.

The only way the pairing of σ and τ can switch is if α comes before β, as in Figure 11. The
two paths induce the following simplex orders: . . . τσ . . .α . . .β (before) and . . .στ . . .α . . .β
(after). We can determine in constant time whether the pairing of σ and τ switches between
the two paths. Depending on the answer, we update the birth curves of α and β in one of
the two ways, shown in Figure 11. We note that if the pairing switches, (i, j) becomes a
lower corner of the birth curve birth(α), and the upper corner of the birth curve birth(β).
We store the updated columns R[α], V[α], R[τ] with the new lower corner of birth(α).

If the pairing does not switch, and thus goes from nested to neither nested nor disjoint,
it is crucial to update the column V[β], stored at the lower corner of birth(β) defined by τ,
to ensure V[α,β] = 0 (necessary for Item 3 in the invariant). An example of such an update
is spelled out in Case 1 in Appendix A. We note that even though the update may seem to
be from right to left because the lower corner of birth(β) comes before the current grade
(i, j), in reality it is left-to-right because simplex β appears after α, when ordered by the
current path.

σ paired up, τ paired down. This scenario is illustrated in Figure 12. Consider any path
that reaches grade (i− 1, j− 1) and then proceeds like the first path in Figure 10. Suppose it
induces an ordering of simplices . . .β . . . τσ . . .α, where β is paired with τ and σ is paired
with α. We consider the path that differs by the transposition of σ and τ, . . .β . . .στ . . .α.

If the pairing of σ and τ switches for one such path, it switches for all such paths.
Therefore, we can determine in constant time whether the pairing switches. If it doesn’t,
there is nothing to report, and there is no need to update columns R[α],V[σ] because τ
cannot appear in them (this follows from [7]; see Appendix A). If the pairing does switch,
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α

β

birth(β)

τ

σ

τ σ α β

(no switch) (switch)

birth(α)

Figure 11 Pairing up. The birth curve birth(α) is shown in red; the birth curve birth(β), in blue.27

α

birth(τ)
τ

σ
τ σ αβ

(no switch)

birth(α)

(switch)

Figure 12 Pairing down and up. The birth curve birth(α), in red; birth(τ), in blue.28
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birth(τ)

τ

σ

α β τ σ

birth(σ)

Figure 13 Pairing down. The birth curve birth(σ), in red; the birth curve birth(τ), in blue.29

we update the birth curve birth(α) as shown in Figure 12; grade (i, j) becomes the lower
corner of the birth curve. σ takes over the birth curve of τ, and we output the following set
of pairs: Dgm(a,b) = −1 for all a ∈ l(birth(σ)) and b = (i, j), and Dgm(a,b) = +1 for all
a ∈ u(birth(σ)) and b = (i, j). (The relevant analysis in the previous section is in Figures 5
and 8 and the accompanying text. The summary in Figure 9 is a convenient shortcut.)

Let us dwell for a moment on the updates to the columns of V, when the pairing does
switch. As explained in Appendix A (Case 3), the necessary update, encoded in matrix X,
subtracts a multiple λ of the column V[τ] from V[σ] before the transposition (to produce
matrix VX in Appendix A), and then adds (V[σ] − λV[τ]) to λV[τ] (after the transposition,
to produce matrix V ′ = PVXPZ). In other words, V ′[τ] = V[σ] and V ′[σ] = V[σ] − λV[τ].
The former equality means that the birth curve birth(α) doesn’t require any updates. But
the latter equality means that for every lower corner of the birth curve birth(τ), we need to
add V[σ] to −λ multiplied by V[τ] stored at that corner. This update takes linear time per
corner, but it’s required only if the pairing switches, in which case every corner contributes to
a non-zero interval in the generalized persistence diagram. We charge each such linear-time
update to the output.

In summary, we can detect whether a switch in the pairing occurs — and if it doesn’t,
perform the necessary updates — in linear time. If the switch does occur, we update each
step in the birth curve, but each such update corresponds to an interval in the output.

σ and τ paired down. This scenario is illustrated in Figure 13. Because both simplices
are negative, each one has its own birth curve, birth(σ) and birth(τ). We can split the birth
curves into two types of segments: those where the birth curve of σ lies below that of τ,
and vice versa. The pairing of τ and σ can switch only in filtrations induced by the paths
through the former type of segments (highlighted in bold in Figure 13). This follows from
Lemma 7: only for such paths is the pairing of the two simplices nested. (Moreover, for any
path through the latter type of segment, V[τ,σ] = 0 — thanks to Item 3 in the invariant —
so no update is necessary for these segments.)

It follows from the stability of 1-dimensional persistence that if the pairing of σ and τ
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switches for one path through the segment, it switches for all paths through the segment.
Accordingly, it suffices to only check the paths around the grades, where the two birth curves
intersect. We can locate all such intersections in linear time.

There are four paths around the two corners:

30 . . .αβ . . . τσ . . .αβ . . .στ
31 . . .βα . . . τσ . . .βα . . .στ

We consider all combinations. In all figures, red signifies the pair of σ and blue, the pair of τ.

Case A. Suppose the pairing of the first two paths (in which τ comes before σ) is as shown
in the figure. Then there are two possibilities: either the pairing switches when we transpose
either pair of simplices in the top-right path, . . .αβ . . .στ . . ., or it doesn’t. We note that
if it switches for one of the transpositions, it is forced to switch for both of them. If the
pairing doesn’t switch, it means that V[τ,σ] = 0 for all columns V[σ] stored in the birth
curve birth(σ), meaning there is nothing to update.

α β τ σ

β α τ σ

α β σ τ

β α σ τ

α

β

forced

(neither nested,
nor disjoint) (neither switches)

(both switch)
?

?

If there is a switch in the pairing, the birth curves are updated (as shown on the right of
the figure) by swapping the respective segments. The update of each lower corner along the
segment takes linear time, but each such corner also produces an interval in the persistence
diagram. So we charge the update to the output. (We note that when updating the columns
at the lower corners a ∈ birth(τ) of the upper birth curve, we have to choose a corner
b ∈ birth(σ) of the lower birth curve that lies below a to perform an update. There can be
multiple such choices, but any one of them works.)

The intervals reported in this case are Dgm[a,b] = +1 for a in l(birth(τ)) and in
u(birth(σ)) (the corners are restricted to the appropriate segments, and the birth curve taken
after the switch), and Dgm[a,b] = −1 for a in u(birth(τ)) and in l(birth(σ)), with b = (i, j).

Case B. This case is symmetric to Case A. That case occurs at the bottom of a segment;
this case occurs at the top.

α β τ σ

β α τ σ

α β σ τ

β α σ τ

α

β

(neither switches)

(both switch)forced

(neither nested,
nor disjoint)

?

?

Case C. The pairing shown in the figure is impossible since it implies that the pairing
switches for a transposition of pairs that are neither nested, nor disjoint, violating Lemma 7.
(We note that there is no contradiction with the previous figures, since there, after the
transposition, σ comes before τ.)
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α β τ σ

β α τ σ

α

β

impossible

Case D. Suppose the pairing of the first two paths (in which τ comes before σ) is as shown
in the next three figures. There are three possibilities: either the pairing switches after the
transposition of σ and τ in the second path, but not the first; or it switches in the first path,
but not the second; or it switches in both. It’s impossible for the pairing to remain the same
along both paths without violating Lemma 7.

In the first two cases, the pairing switches for one of the two segments of the birth curves
that end at the intersection point in grade b = (i, j); in the third case, it switches for both.
The segments for which the pairing does change require updates to the columns of the
matrices R and V stored at their low corners, but each such corner also results in an interval
in the diagram, and we charge the update to the output. For the segments where the pairing
doesn’t switch, we have V[τ,σ] = 0 for all columns V[σ] stored in the birth curve birth(σ),
meaning there is nothing to update.

The intervals (a,b), for a in the lower or upper corners of the birth curves, get +1 or
−1 as in Cases A and B. Specifically, taking the birth curves before the pairing update,
we output Dgm[a,b] = +1 for a in the lower corners l(birth(σ)) and the upper corners
u(birth(τ)); Dgm[a,b] = −1 for a in the upper corners u(birth(σ)) and the lower corners
l(birth(τ)). (See the Summary paragraph at the end of Section 4 for a quick confirmation.)

The exception is when a is the grade of the intersection of the two curves, i.e., the grade
depicted in the figures. Here, the case analysis of Figure 7 applies: we get Dgm[a,b] = −1 in
the first two cases, and Dgm[a,b] = −2 in the third case.

α β τ σ

β α τ σ

α β σ τ

β α σ τ

α

β

switch

no switch

fo
rced

α β τ σ

β α τ σ

α β σ τ

β α σ τ

α

β

forcedno switch

switch

α β τ σ

β α τ σ

α β σ τ

β α σ τ

α

β

switch

switch
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After we perform all the updates, if the birth curve birth(σ) has a lower corner at grade
(·, j), we remove it. (This cannot happen in the previous case of disjoint pairing.)

σ paired down, τ paired up. In this case, the pairing is neither nested, nor disjoint, so by
Lemma 7 it cannot switch. But the birth curve birth(σ) may contain a lower corner at grade
(·, j), i.e., there exists a path along which τ and σ are paired. We remove this corner.

Infinite intervals. After the traversal, we output the “infinite” intervals Dgm[a, (n,n)] = +1
and Dgm[b, (n,n)] = −1 for the lower corners a and the upper corners b in the birth curves
of the implicit cells σ̂.

5.2 Analysis
After the initial persistence computation, the algorithm takes O(n2) steps. Each step requires
an O(n) update, plus an update of the birth curves that we charged to the output: O(n)
time for each one of the C intervals in the output. The total running time is in O(n3 + Cn).
It is immediate from the algorithm that the size of the output C is in O(n3), making the
whole algorithm no worse than O(n4) brute-force approach. On the other hand, C can be as
low as n: for example, if the entire 2-filtration is totally nested, i.e., if the grades of every
pair of simplices are comparable in the poset.
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A Transposition Analysis

The updates to 1-dimensional persistence when two consecutive simplices, τ and σ, transpose
are studied in [7, 19]. Given a boundary matrix D of a filtration, together with its
decomposition R = DV into a reduced and an invertible upper-triangular matrices R and V ,
let P denote the permutation matrix that transposes two adjacent columns (if multiplied on
the right) or rows (if multiplied on the left) that correspond to the simplices τ and σ. We
are interested in finding the decomposition R ′ = (PDP)V ′, where R ′ is reduced and V ′ is
invertible upper-triangular.

Matrix V update. The only way in which V ′ = PVP can fail to satisfy this condition is
if V[τ,σ] 6= 0. If this is the case, we denote by X the matrix that subtracts an appropriate
multiple λ of column V[·, τ] from column V[·,σ] to make V[τ,σ] = 0. In this case, matrix
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PVXP is invertible upper-triangular. We abuse the notation, and let X denote either this
update matrix, or identity if no update was required.

Case 1. Suppose both simplices τ and σ are positive, paired with simplices α and β
respectively. (The case where either one of the simplices is unpaired is analogous.) In this case,
it’s possible that columns R[·,α] and R[·,β] are such that PRXP is not reduced. This happens
when R[τ,β] 6= 0; see Figure 14. If this happens, we can subtract an appropriate multiple of
the first of these two columns from the second, to ensure that the new matrix is reduced.
Denoting this subtraction with matrix Y, we get decomposition (PRXPY) = (PDP)(PVXPY).

If the pairing was nested before the transposition, but did not switch after the transposition
(and thus became neither nested, nor disjoint), i.e., if PRXP is already reduced, it is possible
for the entry V[β,α] 6= 0. The prior work [7, 19] does not pay any special attention to this
case, but, in order to satisfy Item 3 in the invariant in Section 5, we need to subtract an
appropriate multiple of the column V[·,β] from the column V[·,α]. Denoting this update
with matrix Y ′, we get a decomposition (PRXPY ′) = (PDP)(PVXPY ′). In this case, matrix
PRXPY ′ is necessarily reduced. The pairs of any α ′ that were added as non-zero entries
V ′[α ′,α] are necessarily nested in the pair σ-α.

Case 2. Suppose both simplices τ and σ are negative, paired with simplices α and β
respectively. In this case, if α comes after β, then the columns (PRXP)[·, τ] and (PRXP)[·,σ]
may not be reduced because of the update caused by matrix X; see Figure 14. In this case,
we can apply matrix Z after the transposition. This matrix replaces the later column (of
simplex τ after the transposition) by multiplying it by λ and adding an earlier column. In
other words, we get

(PRXPZ)[·, τ] = (PRXP)[·,σ] + λ(PRXP)[·, τ]
= ((PRP)[·,σ] − λ(PRP)[·, τ]) + λ(PRP)[·, τ]
= (PRP)[·,σ].

(The same analysis applies to (PVXPZ)[·, τ].) In other words, the second of the two columns
in matrices R and V do not change. The resulting matrix is reduced and the decomposition,
(PRXPZ) = (PDP)(PVXPZ), satisfies the two conditions.

If the pairing went from nested to neither nested nor disjoint (i.e., it did not switch), the
original update X to matrix V ensures that Item 3 in the invariant in Section 5 is satisfied.

Case 3. Suppose simplex τ is negative, while simplex σ is positive; again the two are
paired with α and β respectively. If matrix V required an update, then because the column
R[·,σ] = 0, the columns τ and σ in matrix (PRXP) are the same, up to the factor of −λ,
requiring a further reduction by an application of matrix Z from Case 2. We get decomposition,
(PRXPZ) = (PDP)(PVXPZ). We note that it is not immediately obvious, but true that
R[τ,β] 6= 0 iff V[τ,σ] 6= 0.

B Algorithm Summary
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Algorithm 1 High-level overview33

33 compute 1-parameter persistence R = DV, simplices sorted by the x-coordinate
34 foreach positive σ do
35 if σ is paired with τ then
36 birth(τ) = ((R[τ],V[τ],V[σ], (x(σ),n)))
37 else if σ is unpaired then
38 pair σ with σ̂ implicitly added at grade (n+ 1,n+ 1)
39 birth(σ̂) = ((R[σ̂] = σ,V[σ̂] = σ̂,V[σ], (x(σ),n)))
40 for i = 1 to n do
41 for j = n to 1 do
42 if (i, j) is the grade of some σ then
43 if σ is positive, paired with τ then
44 set the y-coordinate of the last corner in birth(τ) to j
45 else if σ is negative then
46 output (+1,a, (i, j)) for a ∈ l(birth(σ))
47 output (−1,a, (i, j)) for a ∈ u(birth(σ))
48 else if (i, j) is the grade where σ and τ appear together for the first time then
49 if τ and σ are positive then
50 let α be the pair of σ and β, the pair of τ
51 update the birth curve and R[α], V[α], V[σ], R[β], V[β], V[τ] as

described in the text accompanying Figure 11
52 else if τ is negative, σ is positive then
53 let α be the pair of σ
54 determine if the pairing switches (text accompanying Figure 12),

extend birth(α) accordingly
55 if the pairing switches then
56 birth(σ) takes over birth(τ)
57 update the columns stored at the corners of birth(σ)
58 output (−1,a, (i, j)) for a ∈ l(birth(σ))
59 output (+1,a, (i, j)) for a ∈ u(birth(σ))
60 else if τ and σ are negative then
61 identify distinct segments of the birth curves birth(τ), birth(σ)
62 foreach segment do
63 determine if the pairing switches
64 update and output as described in the text accompanying Figure 13
65 if the first corner in birth(σ) is (·, j) then remove it
66 else if τ is positive, σ is negatve then
67 if the first corner in birth(σ) is (·, j) then remove it

68 foreach σ̂ added in Line 38 do
69 output (+1,a, (n,n)) for a ∈ l(birth(σ̂))
70 output (−1,a, (n,n)) for a ∈ u(birth(σ̂))
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