
Geometry Helps to Compare Persistence Diagrams

MICHAEL KERBER, Graz University of Technology, Graz, Austria
DMITRIY MOROZOV, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
ARNUR NIGMETOV, Graz University of Technology, Graz, Austria

Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a
well-studied subject. In contrast, the practical advantages of using geometry for such problems have not
been explored. We implement geometric variants of the Hopcroft-Karp algorithm for bottleneck matching
(based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance
computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query.
Our interest in this problem stems from the desire to compute distances between persistence diagrams,
a problem that comes up frequently in topological data analysis. We show that our geometric matching
algorithms lead to a substantial performance gain, both in running time and in memory consumption, over
their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only
other implementation available for comparing persistence diagrams.

CCS Concepts: � Mathematics of computing → Mathematical software performance; � Theory of
computation → Discrete optimization;

Additional Key Words and Phrases: Assignment problems, persistent homology, bipartite matching, k-d tree

ACM Reference Format:
Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. 2017. Geometry helps to compare persistence dia-
grams. J. Exp. Algorithmics 22, 1, Article 1.4 (September 2017), 20 pages.
DOI: http://dx.doi.org/10.1145/3064175

1. INTRODUCTION

The assignment problem is among the most famous problems in combinatorial opti-
mization. Given a weighted bipartite graph G with (n+ n) vertices, it asks for a perfect
matching with minimal cost. A common cost function is the minimum of the sum of the
qth powers of weights of the matching edges, for some q ≥ 1. We call the solution in this
case the q-Wasserstein matching and its cost the q-Wasserstein distance. As q tends to
infinity, the Wasserstein distance approaches the bottleneck distance, by definition the
minimum of the maximum edge weight over all perfect matchings. See Burkard et al.
[2009] for a contemporary discussion of the topic with links to applications.

We consider the geometric version of the assignment problem, where the vertices
of G are points in a metric space (X, d) and edge weights are determined by the dis-
tance function d. The metric structure leads to asymptotically improved algorithms
that take advantage of data structures for near-neighbor search. This line of research
dates back to Efrat et al. [2001] for the bottleneck distance and Vaidya [1989] for

Michael Kerber and Arnur Nigmetov acknowledge support by the Max Planck Center for Visual Computing
and Communication. Dmitriy Morozov is supported by Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-05CH11231.
Authors’ addresses: M. Kerber and A. Nigmetov, Institute of Geometry, Graz University of Technology,
8010 Graz, Austria; emails: {kerber, nigmetov}@tugraz.at; D. Morozov, Lawrence Berkeley National Lab, 1
Cyclotron Road, Mailstop 59R-3103, Berkeley, CA 94720; email: dmorozov@lbl.gov.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1084-6654/2017/09-ART1.4 $15.00
DOI: http://dx.doi.org/10.1145/3064175

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

http://dx.doi.org/10.1145/3064175
http://dx.doi.org/10.1145/3064175

1.4:2 M. Kerber et al.

the 1-Wasserstein case. Rich literature has developed since then, mainly focusing on
approximation algorithms for Euclidean metrics in low and high dimensions. In par-
ticular, Sharathkumar and Agarwal [2012] designed an exact O(n3/2) algorithm for 2-
Wasserstein distance between point sets with integral coordinates, an approximation
algorithm for 2-Wasserstein distance was proposed by Agarwal and Phillips [2006], and
a recent summary can be found in Agarwal and Sharathkumar [2014]. On the other
hand, there has been no rigorous study of whether geometry also helps in practice. Our
article is devoted to this question.

We restrict attention to one scenario that motivates our study of the assignment
problem. In the field of topological data analysis, the homological information of a
dataset is often summarized in a persistence diagram. Such diagrams, themselves point
sets in R

2, capture connectivity of a dataset and, specifically, how the connectivity
changes across various scales [Edelsbrunner et al. 2000]. Persistence diagrams are
stable: Small changes in the data cause only small changes in the diagram [Cohen-
Steiner et al. 2007, 2010]. Accordingly, the distances between persistence diagrams
have received a lot of attention in applications (e.g., Adcock et al. [2014], Gu et al.
[2014], and Gamble and Heo [2010]): Where persistence diagrams serve as topological
proxies for the input data, distances between the diagrams serve as proxy measures
of the similarity between datasets. These distances, in turn, can be expressed as a
Wasserstein or a bottleneck distance between two planar point sets, using L∞ as the
metric in the plane (see Section 2 for the precise definition and the reduction).
Our Contributions. Our contribution is twofold. First, we provide an experimental
study illuminating the advantages of exploiting geometric structure in assignment
problems: We compare mature implementations of bottleneck and Wasserstein distance
computations for the geometric and purely combinatorial versions of the problem and
demonstrate that exploiting the spatial structure improves running time and space
consumption for the matching problem. Second, by focusing on the setup relevant
in topological data analysis, we provide the fastest implementation for computing
distances between persistence diagrams, significantly improving the implementation
in the DIONYSUS library [Morozov 2010]. The latter prototypical implementation is
the only publicly available software for the problem. Given the importance of this
problem in applications, our implementation is therefore addressing a real need in
the community. Our code, named HERA, is publicly available.1 This article contains the
following specific contributions:

—For bottleneck matchings, we follow the approach of Efrat et al. [2001]: They augment
the classical combinatorial algorithm of Hopcroft and Karp [1973] with a geometric
data structure to speed up the search for vertices close to query points. We do not
implement their asymptotically optimal but complicated approach. We instead use a
k-d tree data structure [Bentley 1975] to prune the search for matching vertices in
remote areas (also proposed by the authors). As expected, this strategy outperforms
the combinatorial version that linearly scans all vertices. Several careful design
choices are necessary to obtain this improvement; see Section 3.

—For Wasserstein matchings, we implement a geometric variant of the auction
algorithm, an approximation algorithm by Bertsekas [1979]. We use weighted k-d
trees, again with the goal to reduce the search range when looking for the best match
of a vertex. A data structure similar to ours appears in Andrievsky and Sobolevskii
[2008]. Our implementation outperforms a version of the auction algorithm that
does not exploit geometry, which we implement for comparison, both in terms of
runtime and space consumption. Both our implementations of the auction algorithm

1https://bitbucket.org/grey_narn/hera.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

https://bitbucket.org/grey_narn/hera

Geometry Helps to Compare Persistence Diagrams 1.4:3

dramatically outperform DIONYSUS, albeit computing approximations rather than
the exact answers as the latter. DIONYSUS uses a variant of the Hungarian algorithm
[Munkres 1957]; see Section 4.

—We extend our auction implementation to the case of points with multiplicities or
masses. While this problem (known as Hitchcock-Koopmans transportation problem)
can be trivially reduced to the previous one by replacing a multiple point with a suit-
able number of simple copies, it is more efficient to handle a point with multiplicity as
one entity, splitting it adaptively only when fractions are matched to different points.
An extension of the auction algorithm to this case has been decribed by Bertsekas
and Castañon [1989]. We refer to it as auction with integer masses. Our implementa-
tion exploits the geometry of the problem in a similar way as the auction for simple
points. Handling masses imposes a certain overhead that slows down the computa-
tion if the multiplicities are low. However, our experiments show that the advantage
of the auction with integer masses becomes apparent already when the average
multiplicity is around 10, and the performance gap between the two variants of the
auction increases when the average multiplicity increases; see Section 5.

A conference version of this article appeared in ALENEX 2016 [Kerber et al. 2016].
The major novelty of the present version is the discussion of the auction with integer
masses in Section 5. Moreover, we employed a different variant in the (standard) auc-
tion algorithm, which improved the running time of the geometric version by more than
a magnitude. Technical explanations and updated experimental evaluation compared
to Kerber et al. [2016] are discussed in Section 4.

2. BACKGROUND

Assignment Problem. Given a weighted bipartite graph G = (A � B, E, w), with
|A| = n = |B| and a weight function w : E → R+, a matching is a subset M ⊆ E such
that every vertex of A and of B is incident to at most one edge in M. These vertices are
called matched. A matching is perfect if every vertex is matched; equivalently, a perfect
matching is a matching of cardinality n; it can be expressed as a bijection η : A → B.

For a perfect matching M, the bottleneck cost is defined as max{w(e) | e ∈ M}, the
maximal weight of its edges. The q-Wasserstein cost is defined as (

∑
e∈M w(e)q)1/q; for

q = 1, this is simply the sum of the edge weights. A perfect matching is optimal if
its cost is minimal among all perfect matchings of G. In this case, the bottleneck or
q-Wasserstein cost of G is the cost of an optimal matching. If a graph does not have
a perfect matching, then its cost is infinite. For q > 1, the q-Wasserstein cost can be
reduced to the case q = 1 with the following simple observation.

PROPOSITION 2.1. The q-Wasserstein cost of G = (A � B, E, w) equals qth root of the
1-Wasserstein cost of G′ = (A � B, E, wq), where wq means that all edge weights are
raised to the qth power.

We call a graph G = (A� B, E, w) geometric if there exists a metric space (X, d) and
a map φ : A� B → X such that for any edge e = (a, b) ∈ E, w(e) = d(φ(a), φ(b)). In this
case, we generally blur the distinction between vertices and their embedding and just
assume for simplicity that A� B ⊂ X. The motivating example of this work is X = R

2

and d(x, y) = ‖x − y‖∞.
Persistent Homology and Diagrams. We are concerned with a particular type of
assignment problems in this article. Specifically, we are interested in distances studied
by the theory of persistent homology, distances that measure topological differences
between objects. In a nutshell, persistent homology records connectivity of objects—
connected components, tunnels, voids, and higher-dimensional “holes”—across multi-
ple scales. Persistence diagrams summarize this information as two-dimensional point

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:4 M. Kerber et al.

sets with multiplicities. A point (x, y) with multiplicity m represents m features that
all appear for the first time at scale x and disappear at scale y. Features appear before
they disappear, so the points lie above the diagonal x = y. The difference y − x is called
the persistence of a feature. In addition to the off-diagonal points, the persistence dia-
gram also contains each diagonal point (x, x), counted with infinite multiplicity. These
additional points are needed for stability (discussed below) and make the cardinality
of every persistence diagram infinite, even if the number of off-diagonal points is finite.

Given two persistence diagrams X and Y , their bottleneck distance is defined as

W∞(X, Y) = inf
η:X→Y

sup
x∈X

‖x − η(x)‖∞,

where η ranges over all bijections and ‖(x, y)‖∞ = max{|x|, |y|} is the usual L∞-norm.
Similarly, the q-Wasserstein distance is defined as

Wq(X, Y) =
[

inf
η:X→Y

∑
x∈X

‖x − η(x)‖q
∞

]1/q

.

Why are these distances interesting? Because they are stable [Cohen-Steiner et al.
2007, 2010; Edelsbrunner and Harer 2010, Ch. VIII.3]: A small perturbation of the
measured phenomenon, for example, a scalar function on a manifold, creates only a
small change in the persistence diagram—both distances reflect this. The diagonal of
a persistence diagram plays a crucial role in stability. Small perturbations may create
new topological features, but their persistence is necessarily small, making it possible
to match them to the points on the diagonal. We refer the reader to the cited articles
for an extensive discussion.
Persistence Distance as a Matching Problem. We assume from now on that persis-
tence diagrams consist of finitely many off-diagonal points with finite multiplicity (and
all the diagonal points with infinite multiplicity). In this case, the task of computing
W∗(X, Y) can be reduced to a bipartite graph matching problem; we follow the notation
and argument given in Edelsbrunner and Harer [2010, Ch. VIII.4]. Let X0, Y0 denote
the off-diagonal points of X and Y , respectively. If u = (x, y) is an off-diagonal point,
then we denote its orthogonal projection on the diagonal ((x + y)/2, (x + y)/2) as u′,
which is the closest point to u on the diagonal. Let X ′

0 denote the set of all projections
of X0, that is, X ′

0 = {u′ | u ∈ X0}. With Y ′
0 defined analogously as {v′ | v ∈ Y0}, we define

U = X0 ∪ Y ′
0 and V = Y0 ∪ X ′

0; both have the same number of points. We define the
weighted complete bipartite graph, G = (U � V,U × V, c), whose weights are given by
the function

c(u, v) =
{‖u − v‖∞ if˜u ∈ X0˜or˜v ∈ Y0

0 otherwise . (1)

Points from U and V are depicted as squares and circles, respectively, in Figure 1 on
the left; all the diagonal points are connected by edges of weight 0 (plotted as dotted
lines). The following result is stated as the Reduction lemma in Edelsbrunner and
Harer [2010, Ch. VIII.4]:

LEMMA 2.2.

—W∞(X, Y) equals the bottleneck cost of G.
—Wq(X, Y) equals the q-Wasserstein cost of G. This is equal to the qth root of the 1-

Wasserstein cost of Gq, which is the graph G with cost function cq, raising all edge
costs to the qth power.

Note that G is almost geometric: Distances between vertices are measured using the
L∞-metric, except that points on the diagonal can be matched for free to each other

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:5

Fig. 1. An example of G for two persistence diagrams with two off-diagonal points each. Skew edges are
dashed gray, and edges connecting diagonal points are dotted black.

if they are not matched with off-diagonal points. Can this almost-geometric structure
speed up computation? This question motivates our work.

It is possible to simplify the above construction. We call an edge uv ∈ U × V a skew
edge if u ∈ X0, v ∈ X ′

0, and v is not the projection of u, or if v ∈ Y0, u ∈ Y ′
0, and u is not

the projection of v (skew edges are shown with dashed lines in Figure 1).

LEMMA 2.3. For both bottleneck and Wasserstein distance, there exists an optimal
matching in (Gq, cq) that does not contain any skew edge.

PROOF. Fix an arbitrary matching M and define the matching M′ as follows: For
any uv ∈ M ∩ X0 × Y0, add uv and u′v′ to M′. For any skew edge ab′ of M with a the
off-diagonal point (either in X0 or Y0), add aa′ to M′. Also add to M′ all edges of M of the
form aa′, where a is an off-diagonal point. It is easy to see that M′ is a perfect matching
without skew edges, and its cost is not worse than the cost of M: Indeed, the skew edge
ab′ got replaced by aa′ which is not larger, and the vertices on the diagonal possibly got
rearranged, which has no effect on the cost.

Lemma 2.3 implies that removing all skew pairs does not affect the result of the
algorithm, saving roughly a factor of two in the size of the graph.2

We prove another equivalent characterization of the optimal cost that will be useful
in Section 5: The previous lemma showed that, conceptually, increasing the weight of
each skew edge to ∞ does not affect the cost of an optimal matching. We show now that
even decreasing the weight of a skew edge ab′ to the weight of aa′ has no effect on the
optimal cost. Formally, let us define G̃ = (U � V,U × V, c̃) with a new weight function
c̃ as follows:

c̃(u, v) =

⎧⎪⎨
⎪⎩

‖u − v‖∞ if u ∈ X0 and v ∈ Y0
‖u − u′‖∞ if u ∈ X0 and v ∈ X′

0‖v − v′‖∞ if u ∈ Y ′
0 and v ∈ Y0

0 otherwise

. (2)

LEMMA 2.4. For both bottleneck and Wasserstein distance, there exists an optimal
matching in G̃ that does not contain any skew edge.

PROOF. The proof of Lemma 2.3 carries over word by word.

LEMMA 2.5. The weighted graphs G and G̃ have the same bottleneck and Wasserstein
cost.

2DIONYSUS uses the same simplification.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:6 M. Kerber et al.

Fig. 2. Examples of persistence diagrams.

PROOF. Let C be the cost for G, and C̃ be the cost for G̃ with respect to bottleneck
or Wasserstein distance. Since c̃ ≤ c edgewise, C̃ ≤ C is immediate. For the opposite
direction, fix a matching M̃ that realizes C̃ and has no skew edge (such a matching
exists by Lemma 2.4). By the absence of skew edges, the cost M̃ is the same if the cost
function c̃ is replaced by c. This implies C ≤ C̃.

k-d Trees. k-d trees [Bentley 1975] are a classical data structure for near-neighbor
search in Euclidean spaces. The input point set is split into two halves at the median
value of the first coordinates. The process is repeated recursively on the two halves,
cycling through the coordinates used for splitting. Each node of the resulting tree
corresponds to a bounding box of the points in its subtree. The boxes at any given level
are balanced to have roughly the same number of points. Given a query point q, one can
find its nearest neighbor (or all neighbors within a given radius) by traversing the tree.
A subtree can be eliminated from the search if the bounding box of its root node lies
farther from the query point than the current candidate for the nearest neighbor (or
the query radius). Although the worst-case query performance is O(

√
n) in the planar

case, k-d trees perform well in practice and are easy to implement. In Section 3, we use
the ANN [Mount and Arya 2010] implementation of k-d trees, changing it to support
the deletion of points. For Section 4 we implemented our own version of k-d trees to
support the search for a nearest neighbor with weights.
Experimental Setup. All experiments in the article were performed on a server
running Debian wheezy, with 32 Intel Xeon cores clocked at 2.7GHz, with 264GB of
RAM. Only one core was used per instance in all our experiments.

We experimentally compare the performance both on artificially generated diagrams
as well as on realistic diagrams obtained from point cloud data. For brevity, we restrict
the presentation to two classes of instances. In the first class, we generate pairs of dia-
grams, each consisting of n points. The points are of the form (a−|b|/2, a+|b|/2), where
a is drawn uniformly in an interval [0, s] and b is chosen from a normal distribution
N(0, s), with s = 100. In this way, the persistence of a point, |b|, is normally distributed,
so the point set tends to concentrate near the diagonal. This matches the behavior
of persistence diagrams of realistic datasets, where points with high persistence are
sparse, while the noise present in the data generates the majority of the points, with
small persistence. For every set of parameters, we generate 10 independent pairs of
diagrams. We refer to this class of experiments as normal instances (Figure 2(a)).

To get a diagram of the second class, we sample a point set P of n points uniformly
at random from either a four-, or a nine-dimensional unit sphere. The one-dimensional

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:7

persistence diagram of the Vietoris–Rips filtration of P serves as our input. We use the
DIPHA library3 for the generation of these instances. Note that persistence diagrams
generated in this way have different numbers of points. We refer to this class of exper-
iments as real instances (Figure 2(b)). For each set of parameters (sphere dimension
and number of points sampled), we have generated six test instances and computed
pairwise distances between all

(6
2

) = 15 pairs.
Our plots show the average running times and the standard deviation as error bars.

For the real class, the x-axis is labelled with the number of points sampled from the
sphere, not with the size of the diagram. The size of the persistence diagrams, however,
depends practically linearly on the number of sample points, with a constant factor
that grows with dimension: The largest instance for dimension 9 is a diagram with
5, 762 points, while for dimension 4 the largest diagram is of size 1, 679. These are the
largest real instances we were able to produce on the available hardware; computation
of filtrations and persistence diagrams for larger number of sampled points would
require significantly more memory.

Our experiments cover many other cases. We have tested various choices of s, the
scaling parameter in the normal class, and of the sphere dimension in the real class.
We have also tried different ways of generating diagrams, for instance, by choosing n
points uniformly at random in the square [0, s] × [0, s], above the diagonal. In all these
cases, we encountered the same qualitative difference between the tested algorithms
as for the two representative cases discussed in this article.

3. BOTTLENECK MATCHINGS

Our approach follows closely the work of Efrat et al. [2001], based on the following
simple observation. Let G[r] be the subgraph of G that contains the edges with weight
at most r. The bottleneck distance of G is the minimal value r such that G[r] contains
a perfect matching. Since the bottleneck cost for G must be equal to the weight of one
of the edges, we can find it exactly by combining a test for a perfect matching with a
binary search on the edge weights.
The Algorithm by Hopcroft and Karp. Efrat et al. [2001] modify the algorithm
by Hopcroft and Karp [1973] to find a maximum matching. We briefly summarize
the Hopcroft-Karp algorithm; Efrat et al. [2001] provides an extended review. For a
given graph G[r], the algorithm computes a maximum matching, that is, a matching
of maximal cardinality. G[r], with 2n vertices, has a perfect matching if and only if its
maximum matching has n edges.

The algorithm maintains an initially empty matching M and looks for an augmenting
path, that is, a path in G[r] that alternates between edges inside and outside of M, with
the first and the last edge not in M. Switching the state of all edges in an augmenting
path (inserting or removing them from M) augments the matching, increasing its size
by one.

The algorithm detects several vertex-disjoint augmenting paths at once. It computes
a layer subgraph of G[r], from which it reads off the vertex-disjoint augmenting paths.
Both the construction of the layer subgraph and the search for augmenting paths are
realized through a graph traversal in G[r] in O(m) time, where m is the number of
edges. Having identified augmenting paths, the algorithm augments the matching and
starts over, repeating the search until all vertices are matched or no augmenting path
can be found. As shown in Hopcroft and Karp [1973], the algorithm terminates after
O(

√
n) rounds, yielding a running time of O(m

√
n) = O(n2.5).

3https://github.com/DIPHA/dipha.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

https://github.com/DIPHA/dipha

1.4:8 M. Kerber et al.

Geometry Helps. The crucial observation of Efrat et al. [2001] is that for a geometric
graph G[r], the layer subgraph does not have to be constructed explicitly. Instead, one
may use a near-neighbor search data structure, denoted by Dr(S), which stores a point
set S and a radius r. It must answer queries of the form: Given a point q ∈ R

2, return
a point s ∈ S such that d(q, s) ≤ r. Dr(S) must support deletions of points in S. As the
authors show, if T (|S|) is an upper bound for the cost of one operation in Dr(S), the
algorithm by Hopcroft and Karp runs in O(n1.5T (n)) time for a graph with 2n vertices.
For the planar case, Efrat et al. [2001] show that one can construct such a data structure
(for any Lp-metric) in O(n log n) preprocessing time, with T (n) = O(log n) time per
operation. Thus, the execution of the Hopcroft-Karp algorithm costs only O(n1.5 log n).

Naively sorting the edge weights and binary searching for the value of r takes
O(n2 log n) time. But this running time would dominate the improved Hopcroft-Karp
algorithm. To improve the complexity of the edge search, the authors use an approach,
attributed to Chew and Kedem [1992], for efficient kth distance selection for a bi-
chromatic point set under the L∞-distance; see Efrat et al. [2001, Section 6.2.2] for
details.

With this technique, the computation of a maximum matching dominates the cost
of finding the kth largest distance, giving the runtime complexity of O(n1.5 log2 n) for
computing the bottleneck matching. Using further optimizations [Efrat et al. 2001,
Section 5.3], they obtain a running time of O(n1.5 log n) for geometric graphs in R

2 with
the L∞-metric.

It is not hard to see that the analysis carries over to the case of persistence diagrams
(also mentioned in Edelsbrunner and Harer [2010, p. 196]). Let G1 = (U � V,U × V)
be the graph defined in Lemma 2.2. In the algorithm, Dr(S) is initialized with the
points in V , which are subsequently removed from it. We additionally maintain a set
S′ of diagonal points contained in S. When the algorithm queries a near neighbor of a
diagonal point of U , we return one of the diagonal points from S′ in constant time if S′
is not empty. The overhead of maintaining S′ is negligible. We summarize:

THEOREM 3.1. The bottleneck distance of two persistence diagrams can be computed
in O(n1.5 log n).

Our Approach. Our implementation follows the basic structure of Efrat et al. [2001],
reducing the construction of layered subgraphs to operations on a near-neighbor data-
structure Dr(S). But instead of the rather involved data structure proposed by the
authors, we use a simpler alternative: We construct a k-d tree for S. When searching
for a point at most r away from a query point q, we traverse the k-d tree, pruning from
the search the subtrees whose enclosing box is further away from the query than the
current best candidate. When a point is removed from S, we mark it as removed in
the k-d tree; in particular, we do not rebalance the tree after a removal. We also keep
track of how many points remain in each subtree, so we can prune empty subtrees from
the subsequent searches. The running time per search query can be bounded by O(

√
n)

per query, with n the number of points originally stored in the search tree. We remark
that using range trees [de Berg et al. 2000], the worst-case complexity could be further
reduced to O(log n).

Initial tests showed that the naive approach of precomputing and sorting all dis-
tances for the binary search dominates the running time in practice. Instead of im-
plementing the asymptotically fast but complicated approach of Efrat et al. [2001], we
compute a δ-approximation of the bottleneck distance, which we can then post-process
to compute the exact answer. Let dmax denote the maximal L∞-distance between a point
in U and a point in V in G1. First, we compute, in linear time, a 3-approximation of dmax
as follows. We pick an arbitrary point in U , find its farthest point v0 ∈ V , and find a

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:9

Fig. 3. Illustration of the exact computation step: the exact bottleneck distance must be realized by a point
in B (circles) in an annulus around A (crosses). The width of the annulus is determined by the approximation
quality. In this example, there are six candidate pairs.

point u0 ∈ U farthest from v0. Then ‖u0 − v0‖∞ ≤ dmax ≤ 3‖u0 − v0‖∞ (from the triangle
inequality). Setting t = 3‖u0 − v0‖∞, the exact bottleneck distance o must be in [0, t],
and we perform a binary search on [0, t] until we find an interval (a, b] that satisfies
(b − a) < δ · a. We return b as the approximation. It is easy to see that b ∈ [o, (1 + δ)o).

At each iteration of the binary search, we reuse the maximum matching constructed
before (if the true distance is below the midpoint of the current interval (a, b], we
remove edges whose weight is greater than (a + b)/2; otherwise, the whole matching
can be kept).

To get the exact answer, we find pairs in U ×V whose distance is in the approximation
interval, (a, b]. For such a pair (u, v), v lies in an L∞-annulus around u with inner radius
a and outer radius b. So we find for every u ∈ U the points of V in the corresponding
annulus and take the union of all such pairs as the candidate set. In the example in
Figure 3, points in U are drawn as crosses, points in V as circles, and there are six
candidate pairs.

We compute the candidate pairs with similar techniques as used for range trees [de
Berg et al. 2000]. Specifically, we identify all pairs (u, v) whose x-coordinate difference
lies in (a, b]. We can compute the set Cx of such pairs in O(n log n+|Cx|) time by sorting
U and V by x-coordinates. For each pair (u, v) in Cx, we check in constant time whether
‖u − v‖∞ ∈ (a, b] and remove the pair otherwise. We then repeat the same procedure
using the y-coordinates. To compute the exact bottleneck distance, we perform binary
search on the vector of candidate distances.

Let c denote the number of candidate pairs. The complexity of our procedure is
not output-sensitive in c, because |Cx| + |Cy| can be larger than c—so too many pairs
might be considered. Nevertheless, we expect that when using a sufficiently good initial
approximation, both |Cx| + |Cy| and c are small, so our method will be fast in practice.
Experiments. We compare the geometric and non-geometric bottleneck matching al-
gorithms. We set δ = 0.01 and compute the approximate bottleneck distance to the
relative precision of δ, using k-d trees for the geometric version and constructing the
layered graph combinatorially in the non-geometric version. Figure 4 shows the results
for normal and real instances. We observe that the geometric version scales significantly
better and runs faster by a factor of roughly 10 for the largest displayed normal instance
with 25, 000 points per diagram. We remark that the memory consumption of the ge-
ometric and non-geometric versions both scale linearly, and the geometric version is
larger by a factor of roughly 4 throughout. For 25, 000 points, about 60MB of memory
is required.

We used linear regression to fit curves of the form cnα to the plots of Figure 4 (left).
For the non-geometric version, the best fit appeared for α = 2.3, roughly matching the
asymptotic bound of Hopcroft-Karp. For the geometric version, we get the best fit for

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:10 M. Kerber et al.

Fig. 4. Running times of the bottleneck distance computation on normal data (left) and real data (right) for
varying number of points.

Fig. 5. Comparison of the exact geometric bottleneck algorithm of HERA with DIONYSUS for normal (left) and
real (right) input.

α = 1.4; this shows that despite the pessimistic worst-case complexity, the algorithm
tends to follow the improved geometric bound on practical instances.

The above experiment does not include the post-processing step of computing the
exact bottleneck distance. We test the geometric version above that yields a 1% ap-
proximation against the variant that also computes the exact distance from the initial
approximation, as explained earlier in this section. Our experiments show that the
running time of the post-processing step is about half of the time needed to get the
approximation. Although there is some variance in the ratio, it appears that the post-
processing does not worsen the performance by more than a factor of two.

Figure 5 compares the exact bottleneck algorithm of HERA with DIONYSUS, the only
publicly available implementation for computing bottleneck distance between persis-
tence diagrams. DIONYSUS simply sorts the edge distances in increasing order and
performs a binary search, building the graphs G[r] and calling the Edmonds matching
algorithm [Edmonds 1965] from the BOOST library to check for a perfect matching in
G[r]. Already for diagrams of 2, 800 points, our speed-up exceeds a factor of 400.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:11

4. WASSERSTEIN MATCHINGS

We now fix q ≥ 1 and describe an algorithm for computing the q-Wasserstein cost of a
weighted graph (U � V, E, w). Recall from Proposition 2.1 that we can restrict to the
1-Wasserstein case by switching to the cost function wq. Moreover, we assume that
U = {u1, . . . , un} and V = {v1, . . . , vn} are finite sets, and we identify the elements with
their indices.

Auction Algorithm. The auction algorithm of Bertsekas [1979] is an asymmetric
approach to find a perfect matching in a weighted graph that maximizes the sum of
its edge weights. One half of the bipartite graph is treated as “bidders” and the second
half as “objects.” Initially, each object j is assigned zero price, pj = 0, and each bidder
i extracts a certain benefit, bij , from object j. Since we are interested in the minimum
cost matching, we use the negation of the edge weight as the bidder-object benefits,
that is, bij = −wq(i, j). If the edge (i, j) is not in the graph, then bij = −∞. The auction
algorithm maintains a (partial) matching M, which is empty initially. When M becomes
perfect, the algorithm stops. During the execution of the algorithm, matched bidders
in M are called assigned (to an object), and unmatched bidders are unassigned.

The auction proceeds iteratively. In each iteration, one unassigned bidder i chooses
an object j with the maximum value, defined as the benefit minus the current price
of the object, vi j = (bij − pj). Object j is assigned to the bidder; if it was assigned
before, the previous owner becomes unassigned. Let �pij denote the difference of vi j
and the value of the second best object for bidder i; �pij can be zero. The price of object
j increases by �pij + ε, where ε is a small constant needed to avoid infinite loops in
cases where two bidders extract the same value from two objects. Without ε, the two
could keep stealing the same object from each other without increasing its price.

Our variant of the algorithm is called Gauss-Seidel auction: An iteration consists
of only one bid, which is always satisfied. An alternative, called the Jacobi auction,
proceeds by letting each unassigned bidder place a bid in every iteration. If several
bidders want the same object, then it is assigned to the bidder who offers the highest
price increment, �pij + ε. The Jacobi auction, which was used in the ALENEX version
of this article [Kerber et al. 2016], has a drawback if many objects provide the same
value to many bidders. In that case, it may happen that all of these bidders bid for the
same object in one iteration, and all but one of them remain unassigned. Since a Jacobi
iteration is more expensive than a Gauss-Seidel iteration, this may result in worse
performance. Indeed, our experiments show that switching to Gauss-Seidel auction
improves the runtime by an order of magnitude.

How do we choose ε? Small values give a better approximation of the exact answer;
on the other hand, the algorithm converges faster for large values of ε. Bertsekas
suggests ε-scaling to overcome this problem: Running several rounds of the auction
algorithm with decreasing values of ε, using prices from the previous round, but an
empty matching, as an initialization for the next round. Following the recommendation
of Bertsekas and Castañon [1991], we initialize ε with the maximum edge cost divided
by 4 and divide ε by 5 when starting a new round.

Iterating this procedure long enough would eventually yield the exact Wasserstein
distance [Bertsekas 1979]; however, the number of rounds of ε-scaling would in general
be too high for many practical problems. Instead, we use a termination condition that
guarantees a relative approximation of the exact value. We fix some approximation
parameter δ ∈ (0, 1). After finishing a round of the auction algorithm for q-Wasserstein
matching for some value ε > 0, let d := dε be the qth root of the cost of the obtained
matching. We stop if d satisfies

dq ≤ (1 + δ)q(dq − nε), (3)

and return d as the result of the algorithm. We summarize the auction in Algorithm 1.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:12 M. Kerber et al.

LEMMA 4.1. The return value d of the algorithm satisfies

d ∈ [o, (1 + δ)o),

where o denotes the exact q-Wasserstein distance.

PROOF. Because we raise all edge costs to the qth power, the matching minimizing
the sum of the edge costs has a cost of oq. Let dq be the cost of the matching computed by
the auction algorithm, after the last round of ε-scaling, for a fixed ε. By the properties
of the auction algorithm ([Bertsekas 1988], Proposition 1), it holds (after every round)
that

oq ≤ dq ≤ oq + nε.

Taking the qth root yields the first inequality immediately. For the second inequality,
note that

(1 + δ)qoq ≥ (1 + δ)q(dq − nε) ≥ dq,

where the last inequality follows from the termination condition of the algorithm.
Taking the qth root on both sides yields the result.

ALGORITHM 1: AUCTION ALGORITHM

Input: Two persistence diagrams X, Y with |X|, |Y | ≤ n, q ≥ 1, δ > 0 (maximal relative error)
Output: δ-approximate q-Wasserstein distance Wq(X, Y)
Initialize d ← 0 and ε ← 5

4 · (max. edge length)
while dq > (1 + δ)q(dq − nε) do

ε ← ε/5
Let M be an empty matching
while there exists some unassigned bidder i do

Find the best object j with value vi j and the second best object k with value vik for i
Assign j to i in M and increase the price of j by (vi j − vik) + ε

d ← q-th root of the cost of the (perfect) matching M
return d

Bidding. The computational crux of the algorithm is for a bidder to determine the
object of maximum value and the price increase. The brute-force approach is for each
bidder to do an exhaustive search over all objects. Doing so requires linear running
time per iteration. But let us consider what the search actually entails. Bidder i must
find the two objects with highest and second-highest vi j values. Recall vi j = bij − pj =
−wq(i, j) − pj , and maximizing this quantity for a fixed i is equivalent to minimizing
wq(i, j) + pj .

The first way to quickly find these objects uses lazy heaps. Each bidder keeps all
the objects in a heap, ordered by their value. We also maintain a list of all the price
changes (for any object), as well as a record for each bidder of the last time its heap
was updated. Before making a choice, a bidder updates the values of all the objects
in its heap that changed prices since the last time the heap was updated. The bidder
then selects the two objects with the maximum value. We note that this approach uses
quadratic space, since each bidder keeps a record of each object.

The second way to accelerate the search for the best object uses geometry and requires
only linear space. Initially, when all the prices are zero, we can find the two best objects
by performing the proximity search in a k-d tree. But we need to augment the k-d tree
to take increasing prices into account. We do so by storing the price of each point as its
weight in the k-d tree. At each internal node of the tree we record the minimum weight
of any node in its subtree. When searching, we prune subtrees if the qth power of the

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:13

Fig. 6. Comparison of memory consumption of geometric and non-geometric versions of auction algorithm
on normal instances.

distance from the query point to the box containing all of the subtree’s points, plus the
minimum weight in the subtree, exceeds the current second best candidate.

Once a bidder selects the best object, it increases its price. We adjust the subtree
weights in the k-d tree by increasing the chosen object’s weight and updating the
weights on the path to the root. If the minimum weight does not change at some node
on the path, then we interrupt the traversal.

The case of persistence diagrams requires special care. We can distinguish between
diagonal and off-diagonal bidders and objects. Diagonal bidders should bid for only
one off-diagonal object, according to Lemma 2.3. Since the distance between diagonal
points is 0, the value of a diagonal object j for a digonal bidder i is just the opposite
of its price, vi, j = −pj , and we keep all diagonal objects in a heap ordered by the
price. When a diagonal bidder needs to find the best two objects, it selects the top two
elements of the heap and compares them with the only off-diagonal object to which it
can be assigned.

On the other hand, off-diagonal bidders can bid for every off-diagonal object and only
for one diagonal object (its projection). We use one global k-d tree to get the best two
off-diagonal objects and then compare their values for the bidder with the value of
bidder’s projection, so only off-diagonal objects are stored in the k-d tree.
Experiments. Figure 7 illustrates the running times of the auction algorithm on the
normal data, using lazy heaps and k-d trees. In both cases, we compute a relative 0.01-
approximation. The advantage of using geometry is evident: The algorithm is faster by
roughly a factor of 4 for diagrams with 1,000 points, and the factor becomes close to 20
for diagrams with 10,000 points. We used linear regression to empirically estimate the
complexity, and the geometric algorithm runs in O(n1.6), while for the non-geometric
algorithm the estimated complexity is super-quadratic, O(n2.3). The non-geometric ver-
sion only shows competitive running times because of the described optimization with
lazy heaps. This results in a severe increase in memory consumption, as displayed in
Figure 6.

Again, we compare the geometric approach of HERA with DIONYSUS, which uses John
Weaver’s implementation4 of the Hungarian algorithm [Munkres 1957]. Figure 7 (right)

4http://saebyn.info/2007/05/22/munkres-code-v2/.

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

http://saebyn.info/2007/05/22/munkres-code-v2/

1.4:14 M. Kerber et al.

Fig. 7. Comparison of non-geometric and geometric variants of the auction algorithm on normal (left) and
real (right) input, also with DIONYSUS on the real input.

shows the results for real instances. The speed-up of our approach increases from a
factor of 50 for small instances to a factor of about 400 for larger instances. For the
normal datasets, the speed-up already exceeds a factor of 1,000 for diagrams of 1,000
points; we therefore omit a plot.

We emphasize that our test is slightly unfair, as it compares the exact algorithm from
DIONYSUS with the 0.01-approximation provided by HERA. While such an approximation
suffices for many applications in topological data analysis, the question remains how
much overhead would be caused by an exact version of the auction algorithm. A naive
approach to get the exact result is to rescale the input to integer coordinates and to
choose ε such that the approximation error is smaller than 1. We plan to investigate
different possibilities to compute the exact distance more efficiently.

5. WASSERSTEIN MATCHINGS FOR REPEATED POINTS

For a weighted, complete, bipartite graph G = (U � V,U × V, w), we call two vertices
u1, u2 ∈ U identical if for all v ∈ V , w(u1, v) = w(u2, v). A pair of identical vertices in
V is defined symmetrically. If G is a geometric graph, then two points with coinciding
locations are identical. In the context of persistence diagrams, this situation is common
in applications, where the range of possible scales on which features appear and disap-
pear is often discretized. The discretization places all points of the persistence diagram
on a finite grid. For a fixed discretization of a fixed range, more and more identical
points appear as the data size grows. This raises the question whether diagrams with
many identical points can be handled more efficiently.
Auction with Integer Masses. We use a variant of the auction algorithm [Bertsekas
and Castañon 1989], which we explain next. The input consists of two sets U and
V of multi-points, each given by its coordinates and integer multiplicity m ≥ 1; a
multi-point represents m identical points at the given location. For brevity, we refer
to the multiplicity as mass. The total mass of both sets is the same. In analogy to
the auction algorithm from Section 4, we refer to the elements of the respective sets
as multi-bidders and multi-objects. The elements of a multi-object are not, in general,
assigned to the same multi-bidder; their prices can also differ. However, if two elements
of a multi-object are assigned to one multi-bidder, then the algorithm guarantees that
their prices are equal. The algorithm decomposes a multi-object into slices, where each
slice represents a fraction of the multi-object that is currently not distinguished by

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:15

Fig. 8. Correspondence between assignments and matchings. On the left-hand side there are two multi-
bidders, each of mass 4, and four slices with masses 3, 3, 1, 1. A corresponding perfect matching is on the
right-hand side.

the algorithm. Formally, a slice is a four-tuple (j, mi, j, pi, j, i) identifying the multi-
object j it belongs to, the mass of the slice mi, j , its price pi, j , and the multi-bidder
i that it is currently assigned. The decomposition of multi-objects into slices defines
an assignment, which can be interpreted as a matching M in the original graph (see
Figure 8): A slice (j, mi, j, pi, j, i) corresponds to mi, j edges in M from mi, j elements of the
multi-bidder i to mi, j elements of the multi-object j (hereby interpreting multi-bidders
and multi-objects as sets of identical bidders/objects). Unassigned slices correspond to
unmatched vertices. We call an assignment perfect if the induced matching is perfect,
and the cost of the assignment is the cost of the corresponding matching.

The auction with integer masses is a procedure converging to an assignment with
minimal cost. It uses the same high-level structure as the auction described in Section 4,
which we will refer to as the standard auction. It employs ε-scaling with the same
choices of parameters. One round of ε-scaling maintains an assignment and runs until
the assignment is perfect, that is, all multi-bidders are fully assigned to multi-objects.
Every round proceeds in iterations. In each iteration, one multi-bidder with unassigned
mass is selected at random. It acquires enough slices (possibly taking them away from
other multi-bidders) to assign all its missing mass and increases the prices of these
slices.

Specifically, an iteration proceeds as follows. We fix a multi-bidder with some unas-
signed mass u ≥ 1 and let s1, . . . , st be the slices assigned to it. Conceptually, the
algorithm takes all possible slices except for s1, . . . , st and sorts them by their value to
the multi-bidder in decreasing order. We denote the sorted slices by st+1, . . . , sN; let vi
denote the value of si to the multi-bidder.

The multi-bidder takes the first k slices st+1, . . . , st+k such that their total mass m is
at least u. If m > u, then we split the “leftover” slice from st+k whose mass is m− u and
whose price and owner remain unchanged; we denote this newly created slice as s̃t+k.
Now, the total mass of the slices st+1, . . . , st+k is exactly u, and we assign them to the
multi-bidder.

Next, we increase the prices of all t+k slices assigned to the multi-bidder. Let sl with
l ≥ t + k be a slice determined as follows: If the slices s1, . . . , st+k belong to at least two
different multi-objects, sl is the slice containing the (m+ 1)-st unit of mass, that is, sl is
set to st+k+1 if we did not split the leftover slice and to s̃t+k otherwise. If all the t+k slices
are of a single multi-object, then sl is defined to be the first slice among st+k+1, . . . , sN
that belongs to a different multi-object. Let vl be the value of sl to the multi-bidder. We
increase the prices of the slices {si}1≤i≤t+k by vi − vl + ε to make them as valuable to the
multi-bidder as the slice sl, up to ε.

The original article that presents this approach [Bertsekas and Castañon 1989]
describes the Jacobi version of the algorithm, that is, all bidders with unassigned mass
submit bids in one iteration, and the mass goes to the bidder who offered the highest
bid. The above description is the Gauss-Seidel variant of the same algorithm, and it
is straightforward to verify that the same proof of correctness works for it, too. From
the discussion in Bertsekas and Castañon [1989], it follows that one can use the same
formula as for the standard auction to estimate the relative error of the matching

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:16 M. Kerber et al.

obtained after each round of ε-scaling. Therefore, we can use the same termination
condition as in Equation (3) and the proof of Lemma 4.1 carries over. We refer to
Bertsekas and Castañon [1989] for further details.
Diagonal Points. Let X0 and Y0 be the sets of the off-diagonal mult-points of two
persistence diagrams. Recall that for the computation of the q-Wasserstein distance,
we introduce the projection sets Y ′

0 and X ′
0 (also as a set of multi-points with masses

inherited from their pre-images) and set X := X0∪Y ′
0 and Y := Y0∪X ′

0, which are sets of
multi-points with equal total mass. We can run the auction with integer masses, using
the cost function cq, with c as in Equation (1), and return the qth root of the obtained
cost as our result. However, we get a major improvement from using the modified cost
function c̃, defined in Equation (2). The modified function decreases the costs of all
skew edges; accordingly, c̃q treats all points in X ′

0 as identical and all points in Y ′
0 as

identical.
In terms of the auction with integer masses, this means that we only need one

additional multi-bidder (with large mass) to represent all projections of multi-objects
to the diagonal and vice versa. Specifically, writing X0 = {x1, . . . , xk} for the off-diagonal
multi-bidders, let mX denote their total mass. Let Y0 = {y1, . . . , y�} denote the off-
diagonal multi-objects with total mass mY . We introduce one additional multi-bidder
Y ′

0 := {xk+1} (representing all projections of multi-objects), with mass mY , and one
additional multi-object X ′

0 := {y�+1}, with mass mX. The bidder-object benefits are
set up according to Equation (2) (recall that x ′

i denotes the projection of xi onto the
diagonal):

bi, j =

⎧⎪⎪⎨
⎪⎪⎩

−‖xi − yj‖q
∞, i ≤ k and j ≤ �

−‖xi − x′
i‖q

∞, i ≤ k and j = � + 1
−‖yj − y′

j‖q
∞, i = k + 1 and j ≤ �

0, i = k + 1 and j = � + 1

Implementation. We implemented a geometric version of the auction with integer
masses, where the best slices of the off-diagonal multi-objects are determined using
one global k-d tree, similarly as in Section 4. Here, each leaf of the k-d tree represents
a multi-object, and its weight corresponds to the price of its cheapest slice. For a fixed
off-diagonal multi-bidder, we can compute an upper bound on the value of all multi-
objects stored in a subtree of the k-d tree. During a search, we maintain a candidate
set of slices whose total mass exceeds the unassigned mass of the multi-bidder, and
we can prune a subtree if that upper bound is below the value of the worst candidate.
The weights in the k-d tree are updated as in Section 4. The additional information
required to compute the price increases are gathered by similar techniques; we omit
the details. We did not implement a non-geometric version using lazy heaps, because
it would suffer from the same quadratic space complexity as in the standard auction.

Again, we need to deal with the diagonal multi-object and multi-bidder separately.
We maintain a heap with the slices of the diagonal multi-object sorted by the price
and a heap with the slices of all multi-objects (including the diagonal one) sorted by
their value for the diagonal bidder. The diagonal bidder finds the best slices by simply
traversing the latter heap. An off-diagonal bidder first uses the k-d tree to find the best
slices of off-diagonal objects. Then it starts traversing the heap with slices of the diago-
nal object, replacing the off-diagonal slices with the diagonal ones as long as the diago-
nal slices offer better values. When the value of the next diagonal slice in the heap is be-
low the minimal value of the currently accumulated slices, we stop traversing the heap
with diagonal slices. When slice prices are increased, we immediately update the heaps.
Experiments. As input, we turn the aforementioned instances of normal type into
diagrams with integer masses. For each point of the original diagram, we assign mass

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:17

Fig. 9. Comparison of standard auction and auction with integer masses on normal data for mass 1 (upper-
left) and average masses 10 (upper-right), 50 (lower-left), and 100 (lower-right).

m, drawn uniformly from the range [�k/2�, �3k/2�], so the average mass of a point is
k. In our experiments, we compare the standard auction and the auction with integer
masses for k = 1, 10, 50, 100.

We generated normal instances with 1,000 to 10,000 points, in increments of 1,000,
with 10 instances per size. Figure 9 shows the average running times. There is an
overhead for mass 1 (a factor of roughly 4.5 in the figure). This ratio is not constant:
the overhead becomes larger when the number of points grows. We also observe that it
depends on the parameters of the distribution from which the points were drawn. For
average mass 10, the auction with masses is comparable to the standard auction. For
higher masses, 50 and 100, the advantage of the former is evident.

There is no clear dependence between the running time and the average mass. We
took four instances with 10,000 points each and tried larger average masses (with the
same [�k/2�, �3k/2�] distribution). Figure 10 illustrates the result. We can see that
the running time does not increase much when the average mass increases and may

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

1.4:18 M. Kerber et al.

Fig. 10. Dependence of the running time from the average mass for four particular instances of size 10,000.
Note the exponential scale on the x-axis.

even decrease. That seems to depend very much on the particular instance and the
distribution of masses inside it.

The memory consumption of auction with integer masses usually scales linearly with
the number of points (for fixed average mass). In principle, the memory size can grow
proportional to the total mass of the point sets when all slices shrink to size one, but
such intensive slicing did not appear in our examples.

6. CONCLUSION

We have demonstrated that geometry helps to compute bottleneck and Wasserstein
distances of bipartite point sets in two dimensions. Our approach leads to a faster
computation of distances between persistence diagrams. Therefore, we expect our soft-
ware to have an immediate impact on the computational pipeline of topological data
analysis.

For bottleneck matchings, an interesting question would be how our k-d tree im-
plementation compares in practice with the (theoretically) more time efficient, but
more space demanding, alternative of range trees and with other point location data
structures.

For Wasserstein matchings, we plan to further improve our implementation of the
auction algorithm, including a parallel version for large instances. Simple heuristics

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

Geometry Helps to Compare Persistence Diagrams 1.4:19

can also improve special cases. For example, if X and Y are persistence diagrams and
S ⊂ X ∩ Y is the set of common off-diagonal points, then it holds for q = 1 that
Wq(X, Y) = Wq(X \ S, Y \ S), as one shows very easily. This property allows us to
remove common points in the diagram before applying the auction algorithm. We also
wonder how the auction approach compares with the various alternatives proposed in
Burkard et al. [2009], and for which of these approaches can geometry help compute
the Wasserstein distance efficiently, either exactly or approximately.

A natural approximation scheme for computing the Wasserstein distance for very
large instances consists of placing a finite grid over R

2 and “snapping” points to their
closest grid vertex. The result is an instance with a potentially high multiplicity in
each grid vertex. The problem with this approach is the approximation error intro-
duced by the discretization step. A crude error bound is the total number of points
in both diagrams multiplied by the diameter of the grid cells. An interesting ques-
tion is to evaluate more refined discretization schemes with respect to their practical
performance.

We used L∞ distance in the plane to measure the distance between points of the
persistence diagrams, because it is a common choice. However, there is only one step
in the algorithms where this is crucial, namely, in the exact computation of the bot-
tleneck distance we rely on the fact that a ring in the L∞ norm is an axis-aligned
square to quickly identify candidate pairs by sorting. The approximate algorithms for
bottleneck and Wasserstein distance work for any Lp norm without any change, and
the implementation for Wasserstein distance in fact takes p as a parameter.

ACKNOWLEDGMENTS

We thank Sergio Cabello for pointing out that the worst-case complexity of k-d trees and range trees remains
valid under deletions of points and for further valuable remarks on an earlier draft of the article. We also
thank the anonymous reviewers for useful suggestions.

REFERENCES

Aaron Adcock, Daniel Rubin, and Gunnar Carlsson. 2014. Classification of hepatic lesions using
the matching metric. Computer Vision and Image Understanding 121 (2014), 36–42. DOI:http://
dx.doi.org/10.1016/j.cviu.2013.10.014

Pankaj K. Agarwal and Jeff M. Phillips. 2006. On bipartite matching under the RMS distance. In Proceedings
of the 18th Annual Canadian Conference on Computational Geometry (CCCG’06).

Pankaj K. Agarwal and R. Sharathkumar. 2014. Approximation algorithms for bipartite matching with
metric and geometric costs. In Proceedings of the Symposium on Theory of Computing (STOC’14). 555–
564. DOI:http://dx.doi.org/10.1145/2591796.2591844

Alexander Andrievsky and Andrei Sobolevskii. 2008. WANN: An Implementation of Weighted Nearest Neigh-
bor Search. Retrieved from http://www.mccme.ru/ ansobol/otarie/software.html.

Jon L. Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM
18 (1975), 509–517.

Dimitri Bertsekas. 1979. A Distributed Algorithm for the Assignment Problem. Technical Report. Laboratory
for Information and Decision Sciences, MIT.

Dimitri Bertsekas. 1988. The auction algorithm: A distributed relaxation method for the assignment problem.
Ann. Operat. Res. 14, 1 (1988), 105–123.

Dimitri Bertsekas and David Castañon. 1989. The auction algorithm for the transportation problem. Ann.
Operat. Res. 20, 1 (1989), 67–96. DOI:http://dx.doi.org/10.1007/BF02216923

Dimitri Bertsekas and David Castañon. 1991. Parallel synchronous and asynchronous implementations of
the auction algorithm. Parallel Comput. 17, 6 (1991), 707–732.

Rainer E. Burkard, Mauro Dell’Amico, and Silvano Martello. 2009. Assignment Problems, Revised Reprint.
Society for Industrial and Applied Mathematics, Philadelphia, PA, p. 19104.

L. Paul Chew and Klara Kedem. 1992. Improvements on geometric pattern matching problems.
In Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory (SWAT’92). 318–325.
DOI:http://dx.doi.org/10.1007/3-540-55706-7_28

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

http://dx.doi.org/10.1016/j.cviu.2013.10.014
http://dx.doi.org/10.1016/j.cviu.2013.10.014
http://dx.doi.org/10.1145/2591796.2591844
http://www.mccme.ru/ ignorespaces ansobol/otarie/software.html
http://dx.doi.org/10.1007/BF02216923
http://dx.doi.org/10.1007/3-540-55706-7_28

1.4:20 M. Kerber et al.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. 2007. Stability of persistence diagrams. Discr.
Comput. Geom. 37, 1 (2007), 103–120. DOI:http://dx.doi.org/10.1007/s00454-006-1276-5

David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. 2010. Lipschitz functions have
Lp-stable persistence. Found. Comput. Math. 10, 2 (2010), 127–139.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 2000. Computational Geometry:
Algorithms and Applications (2nd ed.). Springer.

Herbert Edelsbrunner and John Harer. 2010. Computational Topology. An Introduction. American Mathe-
matics Society.

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. 2000. Topological persistence and simplifi-
cation. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00).
454–463. DOI:http://dx.doi.org/10.1109/SFCS.2000.892133

Jack Edmonds. 1965. Paths, trees, and flowers. Can. J. Math. 17, 3 (1965), 449–467.
Alon Efrat, Alon Itai, and Matthew J. Katz. 2001. Geometry helps in bottleneck matching and related

problems. Algorithmica 31, 1 (2001), 1–28. DOI:http://dx.doi.org/10.1007/s00453-001-0016-8
Jennifer Gamble and Giseon Heo. 2010. Exploring uses of persistent homology for statistical analy-

sis of landmark-based shape data. J. Multivar. Anal. 101, 9 (2010), 2184–2199. DOI:http://dx.doi.
org/10.1016/j.jmva.2010.04.016

Chen Gu, Leonidas J. Guibas, and Michael Kerber. 2014. Topology-driven trajectory synthesis with an exam-
ple on retinal cell motions. In Proceedings of the International Workshop on Algorithms in Bioinformatics
(WABI’14). 326–339. DOI:http://dx.doi.org/10.1007/978-3-662-44753-6_24

John E. Hopcroft and Richard M. Karp. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput. 2, 4 (1973), 225–231.

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. 2016. Geometry helps to compare persistence dia-
grams. In Proceedings of the 18th Workshop on Algorithm Engineering and Experiments (ALENEX’16).
103–112. DOI:http://dx.doi.org/10.1137/1.9781611974317.9

Dmitriy Morozov. 2010. Dionysus Library for Computing Persistent Homology. Retrieved from
mrzv.org/software/dionysus.

David M. Mount and Sunil Arya. 2010. ANN: A Library for Approximate Nearest Neighbor Searching.
Retrieved from http://www.cs.umd.edu/∼mount/ANN.

James Munkres. 1957. Algorithms for the assignment and transportation problems. J. Soc. Industr. Appl.
Math. 5, 1 (March 1957), 32–38.

R. Sharathkumar and Pankaj K Agarwal. 2012. Algorithms for the transportation problem in geometric
settings. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, 306–317.

Pravin M. Vaidya. 1989. Geometry helps in matching. SIAM J. Comput. 18, 6 (1989), 1201–1225.
DOI:http://dx.doi.org/10.1137/0218080

Received May 2016; accepted February 2017

ACM Journal of Experimental Algorithmics, Vol. 22, No. 1, Article 1.4, Publication date: September 2017.

http://dx.doi.org/10.1007/s00454-006-1276-5
http://dx.doi.org/10.1109/SFCS.2000.892133
http://dx.doi.org/10.1007/s00453-001-0016-8
http://dx.doi.org/10.1016/j.jmva.2010.04.016
http://dx.doi.org/10.1016/j.jmva.2010.04.016
http://dx.doi.org/10.1007/978-3-662-44753-6_24
http://dx.doi.org/10.1137/1.9781611974317.9
http://mrzv.org/software/dionysus
http://www.cs.umd.edu/protect $elax sim $mount/ANN
http://dx.doi.org/10.1137/0218080

