
Communication-Avoiding Optimization Methods for
Distributed Massive-Scale Sparse Inverse Covariance Estimation

Penporn Koanantakool1,2,* Alnur Ali3 Ariful Azad2 Aydın Buluç2,1

Dmitriy Morozov2,5 Leonid Oliker2 Katherine Yelick1,2 Sang-Yun Oh4,2

1Department of Electrical Engineering and Computer Sciences, UC Berkeley
2Computational Research Division, Lawrence Berkeley National Laboratory

3Machine Learning Department, Carnegie Mellon University
4Department of Statistics and Applied Probability, UC Santa Barbara

5Berkeley Institute for Data Science, UC Berkeley

Abstract

Across a variety of scientific disciplines,
sparse inverse covariance estimation is a pop-
ular tool for capturing the underlying depen-
dency relationships in multivariate data. Un-
fortunately, most estimators are not scalable
enough to handle the sizes of modern high-
dimensional data sets (often on the order
of terabytes), and assume Gaussian samples.
To address these deficiencies, we introduce
HP-CONCORD, a highly scalable optimiza-
tion method for estimating a sparse inverse
covariance matrix based on a regularized
pseudolikelihood framework, without assum-
ing Gaussianity. Our parallel proximal gra-
dient method uses a novel communication-
avoiding linear algebra algorithm and runs
across a multi-node cluster with up to 1k
nodes (24k cores), achieving parallel scalabil-
ity on problems with up to ≈819 billion pa-
rameters (1.28 million dimensions); even on
a single node, HP-CONCORD demonstrates
scalability, outperforming a state-of-the-art
method. We also use HP-CONCORD to es-
timate the underlying dependency structure
of the brain from fMRI data, and use the re-
sult to identify functional regions automati-
cally. The results show good agreement with
a clustering from the neuroscience literature.

∗ Now at Google Brain.

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

1 INTRODUCTION

Suppose we observe n samples of a p-dimensional ran-
dom vector (X1, . . . , Xp), drawn independently and
identically from an unknown distribution, which we
assume without loss of generality has mean zero and
covariance matrix Σ0 ∈ Sp++, where Sp++ denotes the
space of (p × p)-dimensional positive definite matri-
ces. In this paper, we are interested in obtaining a
sparse estimate of the underlying inverse covariance
matrix Ω0 = (Σ0)−1 associated with the p random
variables, even in a high-dimensional setup, where it
may be the case that p � n. This problem, known
as sparse inverse covariance estimation, is an impor-
tant one in statistics, and plays a role in a wide vari-
ety of real-world applications, including finance (e.g.,
[30, 28, 45, 23, 3]), biology (e.g., [19, 23, 34]), and
sustainability (e.g., [46, 3, 4]).

There are at least two reasons for the popularity of
sparse inverse covariance estimation. First, it is well-
known that the sparsity pattern of the underlying
inverse covariance matrix Ω0 gives rise to a partial
correlation graph associated with the random vari-
ables X1, . . . , Xp; thus, an estimate of Ω0 can re-
veal the statistical relationships between the variables.
To be more concrete: we construct an undirected
graph, where the vertices correspond to the variables
X1, . . . , Xp, and we put an edge between two vertices
if and only if their (estimated) partial correlation co-
efficient is nonzero. Under the assumption that the
underlying data-generating distribution is multivari-
ate normal, the partial correlation graph is precisely
the conditional independence graph associated with
the variables [27, 26, 7]. It also turns out that many
downstream applications readily use an estimate of the
inverse covariance matrix, not just its sparsity pattern.

The literature on sparse inverse covariance estima-



Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

tion is vast, so we cannot possibly give a complete
coverage of it here; some influential papers include
[32, 48, 19, 36, 9]. On the computational side, a lot of
the recent work has looked at developing scalable algo-
rithms, specifically for a shared memory environment.
However, in a “massive-scale” setting, where p, n are
so large that using a single machine/node is infeasi-
ble, it may be more suitable to consider a distributed
memory approach; e.g., functional magnetic resonance
imaging (fMRI) data sets easily run into the hundreds
of gigabytes and require fitting billions of parameters.
In these cases, the literature is somewhat lacking, with
a few exceptions that we return to later [42, 22].

With this motivation in mind, we propose a new,
highly scalable parallel proximal gradient method, for
obtaining a sparse estimate of the inverse covariance
matrix, in shared and/or distributed memory settings.
The method, called HP-CONCORD (“HP” stands
for “high-performance”), builds on the recently intro-
duced CONCORD [23, 34] and PseudoNet [3] esti-
mators, and explicitly minimizes the communication
costs between nodes by leveraging ideas from the lit-
erature on communication-avoiding algorithms [14].
Highlighting some of our findings: on a single node,
HP-CONCORD is about an order of magnitude faster
at fitting ≈800 million parameters than BigQUIC, a
well-known method for scalable sparse inverse covari-
ance estimation [21], and also demonstrates good scal-
ability on a cluster with 1,024 nodes, where it is able
to fit ≈819 billion parameters in ≈17 minutes.

Here is an outline for the rest of the paper. In the
next section, we give background on the CONCORD
and PseudoNet estimators, as well as communication-
avoiding algorithms, required to understand our
method; in Section 3, we describe our method, HP-
CONCORD. In Section 4, we evaluate HP-CONCORD
on high-dimensional synthetic data, comparing it to
BigQUIC. In Section 5, we present an in-depth em-
pirical study, where we use HP-CONCORD to esti-
mate the underlying partial correlation structure of
the brain from high-dimensional fMRI data, requiring
fitting ≈4 billion parameters. We wrap-up in Sec. 6.

2 BACKGROUND

CONCORD. Recent work [23] proposed the CON-
CORD estimator; CONCORD is a pseudolikelihood -
based [10] estimator of the inverse covariance ma-
trix, meaning (roughly) that it obtains an estimate
by solving a sequence of lasso-like problems, rather
than explicitly minimizing an `1-penalized Gaussian
likelihood, making CONCORD suitable for situations
where the underlying distribution is suspected to be
non-Gaussian. Along these lines, CONCORD outper-

formed a number of strong competitors, including the
graphical lasso [19], on several real-world data sets
[23, 34, 3]. CONCORD also enjoys favorable estima-
tion error and support recovery guarantees [23, 3].

PseudoNet. Follow-up work [3] proposed the
PseudoNet estimator, which generalizes CONCORD,
and attains much better statistical and empirical per-
formance. The PseudoNet estimate is defined as the
solution to the convex optimization problem,

minimize
Ω∈Rp×p

−log det(Ω2
D)+tr(ΩSΩ)+λ1‖ΩX‖1+

λ2

2
‖Ω‖2F ,
(1)

where ΩD,ΩX ∈ Rp×p denote the matrices containing
just the diagonal and off-diagonal entries of Ω, respec-
tively; S = 1

nX
TX ∈ Sp+ is the sample covariance ma-

trix; X ∈ Rn×p is the observation matrix; λ1, λ2 ≥ 0
are tuning parameters; and ‖ · ‖1, ‖ · ‖F denote the el-
ementwise `1- and Frobenius norms, respectively. As
far as the criterions are concerned, the only difference
between PseudoNet and CONCORD is the presence
of the squared Frobenius norm penalty, i.e., setting
λ2 = 0 recovers the CONCORD criterion, analogous
to the relationship between the elastic net [49] and the
lasso. Thus, to keep things simple, we use the names
CONCORD and PseudoNet interchangeably.

As the criterion (1) is the sum of smooth and nons-
mooth convex functions, optimizing (1) with a proxi-
mal gradient method [35] is natural. Applying a proxi-
mal gradient method to (1), as in [3], yields Algorithm
1. A comment on notation: we use Sα(Z) to denote
elementwise soft-thresholding operator (i.e., the proxi-
mal operator of the `1-norm) at Z ∈ Rp×p with α > 0,

[Sα(Z)]ij =


Zij − α, Zij > α

Zij + α, Zij < −α
0, otherwise

, i, j = 1, . . . , p.

(2)

Key bottlenecks. Algorithm 1 has some key com-
putational bottlenecks that are especially problematic
in a high-dimensional setting. First and foremost, as-
suming dense matrices, computing the matrix product
Ω(k)S, on each proximal gradient and line search iter-
ation, costs O(p3). Computing the covariance matrix
S has the one-time upfront cost of O(p2n). Finally,
transposing Ω(k)S swaps O(p2) entries each iteration.

Thus, despite CONCORD’s many favorable statisti-
cal properties, these bottlenecks make scaling CON-
CORD to massive data sets challenging. For example,
Algorithm 1 can reconstruct the underlying gene-gene
associations in a breast cancer data set, where p ≈ 4k,
in just ≈10 minutes, but it quickly becomes extremely
slow or even intractable when analyzing the complete



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

Algorithm 1 Proximal gradient method for computing the CONCORD/PseudoNet estimate [3].

Input: data matrix X ∈ Rn×p; tuning parameters λ1, λ2 ≥ 0; optimization tolerance ε > 0

Output: estimate Ω̂ ∈ Rp×p of the underlying inverse covariance matrix Ω0

1: Set the initial point to the identity matrix: Ω(0) ← I
2: Compute S ← 1

n
XTX . Compute the sample covariance matrix (once)

3: for k = 0, 1, 2, . . . . k denotes the iteration counter

4: G(k) ← −(Ω
(k)
D )−1 + 1

2
(SΩ(k) + Ω(k)S) + λ2Ω(k) . Compute the gradient, G(k), of the smooth part of (1)

5: g(Ω(k))← − log det((Ω
(k)
D )2) + tr(Ω(k)SΩ(k)) + λ2

2
‖Ω(k)‖2F . Evaluate the smooth part of (1), used below

6: for τ = 1, 1
2
, 1

4
, . . . . Choose the step size τ via backtracking line search

7: Ω(k+1) ← Sτλ1(Ω(k) − τG(k)) . Apply the elementwise soft-thresholding operator Sτλ1 ; see (2)

8: g(Ω(k+1))← − log det((Ω
(k+1)
D )2) + tr(Ω(k+1)SΩ(k+1)) + λ2

2
‖Ω(k+1)‖2F . Evaluate the smooth part of (1)

9: until g(Ω(k+1)) ≤ g(Ω(k))− tr((Ω(k) − Ω(k+1))TG(k)) + 1
2τ
‖Ω(k) − Ω(k+1)‖2F

10: until a stopping criterion is satisfied, using ε

11: return the estimate Ω̂← Ω(k)

gene expression data set, where p ≈ 30k [34]. Further-
more, the running time required to compute the CON-
CORD estimates across a grid of tuning parameters,
as in resampling methods such as cross-validation, the
bootstrap, and stability selection [33, 29], would be
prohibitive. To address these computational deficien-
cies, we build on the recent work coming out of the
literature on communication-avoiding algorithms.

Communication-avoiding algorithms. Commu-
nication often dominates the overall cost of a dis-
tributed algorithm [5, 16] and therefore should be
minimized. In scientific computing, communication-
avoiding algorithms (see, e.g., [8, 39, 17]) signifi-
cantly reduce communication by (i) choosing a suit-
able data layout, i.e., sensibly distributing data across
nodes; (ii) replicating, i.e., duplicating data across
nodes to cut down on communication at the expense
of space; and (iii) computing a quantity of interest,
given the layout and replication, in a communication-
efficient way. Speedups ranging from 2-100× have
been reported in the literature [13, 24, 25, 38, 44, 6];
in fact, communication-avoiding algorithms decrease
communication asymptotically in the amount of repli-
cation. However, communication-avoiding algorithms
have gone relatively unnoticed in statistics, until very
recently [47, 15, 40]. Our approach is motivated by
the recent “2.5D” [39] and “1.5D” [24] communication-
avoiding matrix multiplication algorithms.

Related work. Wang et al. [43] present a dis-
tributed memory approach to sparse inverse covari-
ance estimation, based on the alternating direction
method of multipliers [12], without optimizing the
amount of communication; it would be interesting to
combine their method with a communication-avoiding
algorithm. GINCO [22] is a distributed greedy algo-
rithm, which is not guaranteed to converge to a glob-
ally optimal point. We compare to BigQUIC [21], a
well-known Gaussian likelihood method.

3 HP-CONCORD

HP-CONCORD resolves the key computational bot-
tlenecks in Algorithm 1, by distributing the data (e.g.,
X), any intermediate variables (e.g., the iterates Ω(k)),
and any computations across a network of nodes/pro-
cessors. Some of the computations may then be done
in an embarrassingly parallel way; for the others, we
turn to a communication-avoiding approach.

We begin by observing that Ω(k)S, critical to most of
the calculations in Algorithm 1, can be computed in
two ways, with different computation and communi-
cation costs. The first approach, which we call “Cov”,
explicitly computes S = 1

nX
TX, using S to then

compute Ω(k)S. The second approach, which we call
“Obs”, never explicitly computes S, opting instead to
compute Y (k) = 1

nΩ(k)XT and Y (k)X = Ω(k)S. (The
fact that Cov computes the covariance matrix S, while
Obs never does, now explains their names.) Below, we
broadly describe how Cov and Obs parallelize CON-
CORD’s bottlenecks; then we discuss the details.

Parallelizing CONCORD’s key bottlenecks.
The Cov variant. As mentioned, Cov proceeds by com-
puting S = 1

nX
TX (line 2 in Algorithm 1), i.e., the

product of two dense matrices, upfront. Cov then uses
S to compute W (k) = Ω(k)S, a sparse-dense prod-
uct, on every line search iteration. The transpose
(W (k))T is formed on every proximal gradient itera-
tion. All the matrix products can be computed us-
ing the communication-avoiding algorithm for dense-
dense and sparse-dense matrix multiplication that we
present below, while the transpose can be computed
via partial all-to-all communication. Using W (k), Cov
then computes the rest of the gradient G(k) (line 4) in
an embarrassingly parallel way, as inverting a diagonal
matrix (equivalent to inverting the entries on the diag-
onal) and applying the soft-thresholding operator Sτλ1

are just simple elementwise operations. As for the line



Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

Algorithm 2 The Cov variant of HP-CONCORD, for computing a sparse estimate of the inverse covariance matrix.

Input: data matrix X ∈ Rn×p; tuning parameters λ1, λ2 ≥ 0; optimization tolerance ε > 0

Output: estimate Ω̂ ∈ Rp×p of the underlying inverse covariance matrix Ω0

1: Ω(0) ← I
2: Compute S ← 1

n
XTX . Compute (once) via a distributed dense-dense matrix multiplication

3: Compute W (0) ← Ω(0)S . Compute via a distributed sparse-dense matrix multiplication
4: for k = 0, 1, 2, . . .
5: Form (W (k))T . Form via a distributed matrix transpose

6: G(k) ← −(Ω
(k)
D )−1 + 1

2
((W (k))T +W (k)) + λ2Ω(k) . Use W (k), (W (k))T

7: g(Ω(k))← −2
∑
i log(Ω

(k)
ii ) + tr(W (k)Ω(k)) + λ2

2
‖Ω(k)‖2F . Use (W (k))T ; see text for details

8: for τ = 1, 1
2
, 1

4
, . . .

9: Ω(k+1) ← Sτλ1(Ω(k) − τG(k)) . Apply the soft-thresholding operator, Sτλ1 , in a distributed manner

10: Compute W (k+1) ← Ω(k+1)S . Compute via a distributed sparse-dense matrix multiplication

11: g(Ω(k+1))← −2
∑
i log(Ω

(k+1)
ii ) + tr(W (k+1)Ω(k+1)) + λ2

2
‖Ω(k+1)‖2F . See text for details

12: until g(Ω(k+1)) ≤ g(Ω(k))− tr((Ω(k) − Ω(k+1))TG(k)) + 1
2τ
‖Ω(k) − Ω(k+1)‖2F . See text for details

13: until a stopping criterion is satisfied, using ε

14: return the estimate Ω̂← Ω(k)

search (lines 6–9): since (i) log det(A) =
∑
i log(Aii),

(ii) tr(BC) =
∑
i,j BijCij and (iii) ‖B‖2F = tr(B2),

for a diagonal matrix A and symmetric matrices B,C,
these may be done in an embarrassingly parallel way.

The Obs variant. Obs never explicitly computes S;
rather, it proceeds by computing Y (k) = 1

nΩ(k)XT on
every proximal gradient and line search iteration via a
communication-avoiding algorithm, as with Cov. The
rest of the gradient G(k) is then computed by forming
Z(k) = Y (k)X as well as (Z(k))T , and using the same
embarrassingly parallel elementwise operations as be-
fore. Noticing tr(Ω(k)SΩ(k)) = 1

n tr(Ω(k)XTXΩ(k)) =
1
n‖Ω

(k)XT ‖2F = 1
n‖Y

(k)‖2F , the line search (except for

forming Y (k)) also consists of elementwise operations.

We present a high-level description of the Cov variant
of HP-CONCORD in Algorithm 2, highlighting the
main differences vs. Algorithm 1 in blue. The pseu-
docode for Obs, shown in the supplement, is similar.

Matrix layouts and multiplication algorithms.
Parallel matrix multiplication is a well-studied prob-
lem, but most existing work considers dense matrices,
and there is room for improvement in special cases.
The most popular algorithm uses a 2D layout [2, 41],
treating the processors as a square grid and making
each processor responsible for all computations associ-
ated with one submatrix of the output matrix. 3D [1]
and 2.5D [39] algorithms are provably communication-
optimal in certain cases, and instead divide up the 3D
iteration space, by essentially making c copies of the
output matrix, and having a square group of proces-
sors responsible for a subset of updates to that copy;
the copies are eventually summed to produce the final
answer. As we discuss next, these are not always the
fastest methods in our setting, due to the matrix sizes
and sparsity levels that arise with Cov and Obs.

Cov. For the sparse-dense product W (k) = Ω(k)S,
shifting around only Ω(k) can use much less bandwidth,
and could outperform the classic 2D/2.5D/3D algo-
rithms by up to two orders of magnitude [24]. There-
fore, we put Ω(k) in 1D block row and S in 1D block
column layout. As for S = 1

nX
TX: when p > n, XT

is tall and X is wide, so partitioning X in a 2D lay-
out, as 2D/2.5D/3D algorithms do, would result in tall
and short local matrices, which perform poorly on lo-
cal memory hierarchies. Instead, we group processors
into teams of c members each, and arrange the teams
as a 1D array, distributing the rows of XT (a 1D block
row layout) and the cols. of X (a 1D block col. layout).

Obs. The dense-dense product Z(k) = Y (k)X is sim-
ilar to XTX. For the sparse-dense product Y (k) =
Ω(k)XT , we proceed just as for W (k) = Ω(k)S with
Cov, putting Y (k),Ω, XT all in a 1D block row layout.

Figure 1 illustrates all the distributed operations.

Replication. Here, we extend the 1.5D algorithm
[24] to support different replication factors for each
matrix operand. We use our algorithm, detailed in Al-
gorithm 3, to compute all the matrix products arising
with Cov and Obs. To compute the product C = AB,
our algorithm rotates either A or B around (call this
matrix R), fixing the other (call this F ), and leaving
C stationary. Let P be the number of homogeneous
processors, let cR and cF be the replication factors
of R and F , and let GR and GF be the logical grids
of processors of sizes P/cR × cR and P/cF × cF , re-
spectively. We partition R equally, in 1D, into P/cR
parts, and let processors GR(i, :) have the ith part.
Similarly, we partition F and C equally, in 1D, into
P/cF parts, letting processors GF (j, :) have the jth
part. The processors GF (j, :) now work together as a
team to compute the jth part of C, with each member



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

Transpose

X

XT

W

Ω

S WT

G

+

Soft-thresholding
and local transpose

Transpose

XT

Z

Ω

X ZT

GY

+

Soft-thresholding

Once

Every line 

search iteration 

Every 

gradient step

Figure 1: Left: Cov first computes S = 1
n
XTX by shift-

ing XT ; then, on every iteration k, Cov computes W (k) =
Ω(k)S by shifting Ω(k), globally transposes W (k), computes
G(k) from W (k) and (W (k))T , soft-thresholds G(k) to get

Ω(k), and converts Ω(k) back to 1D block row layout by
doing a local matrix transpose. Right: Obs computes
Y (k) = 1

n
Ω(k)XT by shifting XT , computes Z(k) = Y (k)X

by shifting X, globally transposes Z(k) to get (Z(k))T in

the same layout, computes G(k) from Z(k) and (Z(k))T ,

and then soft-thresholds G(k) to get the new Ω(k).

multiplying the jth part of F with different parts of
R. Further details are contained in the supplement.

Algorithm 3 Our 1.5D matrix multiplication algorithm.

1: for each GR(i, `R) = GF (j, `F ), in parallel, do
2: δ ← min(`F , `R) ·max(1, cF /cR)
3: Shift R by δ
4: for p

cF cR
rounds do

5: Calculate local C = AB
6: Shift R by cF
7: end for
8: SumReduce/Allgather C between GF (j, :)
9: end for

Final computation and communication costs.
We model the total running time of a distributed al-
gorithm as T = Fγ + Lα +Wβ, where F is the total
number of flops across all processors; L is the latency
cost, i.e., the total number of messages sent by all pro-
cessors; and W is the bandwidth cost, i.e., the size of
all the messages sent. We define γ, α, β as machine-
dependent quantities, measuring the time per flop,
time to initiate a message, and time to send a word
(i.e., an atomic unit of communication), respectively.

We also make the following definitions. Let s be the
total number of proximal gradient iterations for HP-
CONCORD, t be the average number of line search
iterations on each proximal gradient iteration, and d
be the average number of nonzero entries in a row of
Ω(k) (averaged over all rows and all st line search iter-
ations). Also, let P be the number of processors and
nnz(C) denote the number of nonzeros in C.

The following lemma, proven by working through the
details presented above for computing W (k) = Ω(k)S,
S = 1

nX
TX, Y (k) = Ω(k)XT , and Z(k) = Y (k)X,

presents the total dominant flop counts for Cov and
Obs. Using the flop counts, the lemma also tells us

when Cov is cheaper than Obs (when Cov is “worth
it”). All our proofs are contained in the supplement.

Lemma 3.1. Cov costs FCov = 2np2 + 2dp2(st + 1)
flops, while Obs costs FObs = 2np2s + 2dnp(st + 1)
flops. Therefore, Cov is cheaper than Obs as long as:
d/p < (n/(p− n)) · (1/t).

Turning now to the communication costs, our next
lemma establishes that Algorithm 3 can reduce the
communication involved in transposing a matrix, help-
ful as transposing can be an expensive operation since
it involves all-to-all communication for a 1D layout.

Lemma 3.2. In Algorithm 3, transposing the matrix
C requires: log2(Q) messages and (nnz(C) · cRcF ·
Q log2(Q))/P words, where Q = max(P/c2R, P/c

2
F ).

The following lemma shows we can save a factor of
cRcF in latency and cR in bandwidth, by using Alg. 3.

Lemma 3.3. Algorithm 3 sends P
cRcF

messages and
nnz(R)
cF

words, where R is the matrix that is rotated.

Our final lemma presents the total communication
costs for Cov and Obs, by using the preceding results
and working through the communication costs of com-
puting the various matrices.

Lemma 3.4. Let Q = max(P/c2X , P/c
2
Ω). Then Cov’s

communication costs are:

LCov =
P

c2X
+ st

P

cXcΩ
+ log2(Q),

WCov =
np

cX
+ st

dp

cX
+ p2 cXcΩ

P
Q log2(Q),

while Obs’ communication costs are:

LObs = s(t+ 1)
P

cΩcX
+ log2(Q),

WObs = s(t+ 1)
np

cΩ
+ p2 cXcΩ

P
Q log2(Q).

4 NUMERICAL EXAMPLES

In this section, we evaluate the computational perfor-
mance of HP-CONCORD on several synthetic data
sets. We start by empirically verifying Lemma 3.1,
running experiments with various values of n and
checking when Cov becomes faster than Obs. After-
wards, we investigate the benefits of replication, as
discussed in Section 3, by varying the tuning param-
eters cX , cΩ, controlling the amount of replication for
the matrices X,Ω, respectively. Finally, we run several
head-to-head timing comparisons with BigQUIC.

All our experiments in this section were run with dou-
ble precision on “Edison”, a 5,586-node supercomputer
at the National Energy Research Scientific Comput-
ing Center, where each node consists of two 12-core



Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

 8

 16

 32

 64

 128

 256

 512

 1024

100 200 400 800 1600 3200 6400 12800

T
im

e
 (

s
e
c
o
n
d
s
)

n (#observations)

Cov-random
Obs-random

Cov-chain
Obs-chain

Figure 2: Runtimes in seconds for Cov (blue/red) vs. Obs
(green/yellow), on synthetic data coming from chain and
random graphs, with 16 nodes, p = 40k, and various n.

2.4 GHz Intel Xeon E5-2695 processors with 64 GB of
DDR3 RAM. Our code was written in C++ using MPI
and OpenMP. We used 2 MPI processes per node. For
the results in Section 5, we used the “Eos” supercom-
puter at Oak Ridge Leadership Computing Facility.

When does Cov become worth it? We consider
both banded and random strictly diagonally dominant
Ω0’s, corresponding to chain and random graphs, re-
spectively, and sample Gaussian data. For each setup,
we fix p = 40,000, vary n ∈ {100, 200, . . . , 12,800}, and
plot in Figure 2 the runtimes (on 16 nodes) required
for Cov and Obs to generate estimates attaining the
same average degree as the underlying graph (2 for
the chain graph, 60 for the random graph). It is clear
from the figure that Obs’ runtime grows linearly with
n, while Cov’s does not, consistent with Lemma 3.1,
as the dominant term in Obs’ cost depends linearly on
n and Cov’s does not. The trend reverses when we
fix n and increase p, i.e., Obs becomes asymptotically
more appealing than Cov. Interestingly, the crossover
point where Cov becomes faster than Obs happens
later than Lemma 3.1 predicts, since most of Cov’s
cost comes from sparse-dense matrix multiplications,
which have higher time per flop than the dense-dense
matrix multiplications that dominate Obs’ overall cost
(i.e., γsparse-dense � γdense-dense).

Benefits of replication. To illustrate the benefits
of replication, we run Obs on all possible replication
configurations (i.e., all cX , cΩ combinations) with 256
nodes on a chain graph, where p = 40k, n = 100, plot-
ting all the runtimes in seconds in Figure 3. The figure
shows both extremes: (a) when cX = cΩ = 1, Obs is
in a purely non-communication-avoiding mode, parti-
tioning all the matrices into P equal blocks, and takes
the longest to run; and (b) when cX = 512 and cΩ = 1,
every processor maintains the entire X, does all matrix
multiplications locally, and only communicates when
replicating X and during the transpose. The best re-
sult comes when cX = 8 and cΩ = 16, a 5× speedup
over the non-communication-avoiding configuration.

Replication effects

HP-CONCORD: Massively Parallel Graphical Model Structure Learning

Total running time (seconds). Chain graph (3 nnz/row), 
TWO, 256 nodes (6k cores, P=512), n=100 samples, p=40k features

1 2 4 8 16 32 64 128 256 512
1 13.15 9.69 8.73 7.34 7.09 7.01 7.17 6.56 7 5.01
2 9.35 5.75 5.78 7.1 5.42 5.42 5.78 5.13 3.9
4 5.28 3.94 3.42 5.08 4.44 4.39 4.3 3.86
8 4.08 3.45 3.07 2.84 4.19 4.08 3.65
16 4 3.55 3.2 2.63 3.83 3.77
32 4 6.06 3.43 3.38 3.26
64 6.13 4.77 4.7 4.42
128 7.8 6.59 5.87
256 10.97 9.47

cX

cΩ

Good → Bad

Figure 3: Runtimes in seconds for Obs, at various repli-
cation factors, on a chain graph with 256 nodes, p =
40k, and n = 100. Colder/warmer cells mean better/
worse runtimes. The worst runtime is due to the non-
communication-avoiding configuration, circled in blue; the
best is circled in red, with a 5× speedup due to replication.

Method p = 10k p = 20k p = 40k p = 80k

HP-CONCORD
PPV 99.75 99.92 99.94 99.94
FDR 0.25 0.08 0.06 0.06

BigQUIC
PPV 99.48 99.71 99.78 99.81
FDR 0.52 0.29 0.22 0.19

Table 1: The positive predictive values (PPVs) and false
discovery rates (FDRs) for HP-CONCORD vs. BigQUIC,
relative to the sparsity pattern of Ω0, for various p. Best
(i.e., highest PPVs and lowest FDRs) in bold.

Comparison with BigQUIC. Finally, we compare
HP-CONCORD with BigQUIC, on chain and random
graphs. To put the two algorithms on an equal foot-
ing, we choose the tuning parameters so that the es-
timates are equally sparse. For the chain graphs, we
fix n = 100 and vary p from 10,000 to 1.28 million.
As d is not much smaller than n, we use the Obs
variant of HP-CONCORD and vary the number of
nodes, reporting the best runtime across a range of
replication levels. We present the results in the left
panel of Figure 4, and interpolate BigQUIC’s result
for p = 1,280,000 as it took longer than four days
to converge. From the figure, we see HP-CONCORD
matching BigQUIC in a shared memory setup (i.e.,
one node), and demonstrating good scalability as more
nodes are added, which the user may customize to fit
their needs; e.g., when p = 80,000, an estimate may be
computed in less than four seconds with 1,024 nodes.

For the random graphs, we vary p from 10,000 to
320,000. In the middle panel of Figure 4, we fix
n = 100, and again use Obs, as d here is even larger
than it was for the chain graphs. In the right panel,
we set n = p/4, and use Cov because n is large. In
both figures, we see Obs outperforming BigQUIC by
about an order of magnitude, and exhibiting even bet-
ter scalability as more nodes are added than with the
chain graphs, since Ω0 is comparatively denser here.
Lastly, in Table 1, we present the best positive predic-
tive values and false discovery rates for both methods,
computed by looking at the differences between the
estimated and true sparsity patterns, across a range of
tuning parameters. At all problem sizes, our method
demonstrates better graph recovery than BigQUIC.



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

1

4

16

64

256

1,024

4,096

16,384

65,536

262,144

1,048,576

10k 20k 40k 80k 160k 320k 640k 1,280k

T
im

e
 (

s
e
c
o
n
d
s
)

p (#features)

BigQUIC
Obs-1
Obs-4
Obs-16
Obs-64
Obs-256
Obs-1024

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

10k 20k 40k 80k 160k 320k

T
im

e
 (

s
e
c
o
n
d
s
)

p (#features)

BigQUIC
Obs-1
Obs-4
Obs-16
Obs-64
Obs-256

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

10k 20k 40k 80k 160k

T
im

e
 (

s
e
c
o
n
d
s
)

p (#features)

BigQUIC
Cov-1
Cov-4
Cov-16
Cov-64
Cov-256
Cov-1024

Figure 4: Runtimes in seconds for HP-CONCORD vs. BigQUIC. Left: chain graph with n = 100. Middle: random graph
with n = 100. Right: random graph with n = p/4. “Obs-x” or “Cov-x” denotes Obs or Cov run with x nodes.

Figure 5: The clusterings from Glasser et al., for the left
and right hemispheres of the brain; the colors only serve to
differentiate the different clusters and carry no additional
meaning. The clusterings rely on multiple exogenous data
sources and a significant amount of domain knowledge.

5 CASE STUDY: GRAPH
ESTIMATION FROM fMRI DATA

We now present a case study, where we use HP-
CONCORD to make progress on a challenging and
important problem in neuroscience: obtaining a bi-
ologically meaningful clustering of the brain (more
specifically, points on the cerebral cortex), from high-
dimensional fMRI data. The data we use, from the Hu-
man Connectome Project [37], is a (91, 282× 91, 282)-
dimensional sample covariance matrix, roughly 60 GB
in size, and requires fitting ≈4 billion parameters. The
large number of dimensions rules out most methods for
sparse inverse covariance estimation, but makes HP-
CONCORD a natural choice. Below, we qualitatively
and quantitatively compare the clusterings generated
by HP-CONCORD to those from Glasser et al. [20], a
state-of-the-art clustering from the neuroscience liter-
ature, presented in Figure 5. Previewing our findings,
we see that the entirely data-driven clusterings gener-
ated by HP-CONCORD are able to capture many of
the important features also present in Glasser et al.

Approach. We pursue a two-step approach, where
for step (i) we generate a partial correlation graph
using HP-CONCORD, and for step (ii) we apply a
graph-based clustering algorithm to the partial corre-
lation graph arising from the sparsity pattern of the
HP-CONCORD estimate. For step (i), we consider
all combinations of the tuning parameters λ1 ∈{0.48,
0.5, 0.52, 0.54, 0.57, 0.59, 0.61, 0.64, 0.67, 0.69,
0.72}×λ2 ∈{0.10, 0.13, 0.16, 0.2, 0.25, 0.31, 0.39,

0.49}; tuning parameters outside these ranges yielded
either trivially sparse or dense estimates. Running
HP-CONCORD on a single (λ1, λ2) pair took ≈37
minutes. For step (ii), the clustering algorithms we
consider are: the well-known Louvain method [11], as
well as a relatively new clustering method from the
persistent homology literature [18] that leverages the
degree matrix associated with the partial correlation
graph (details in the supplement). Additionally, be-
cause the clusterings from Glasser et al. treat the left
and right hemispheres of the brain separately, we run
and evaluate our clustering algorithms on the sub-
graphs for the left and right hemispheres separately.

Evaluation. As mentioned, our main points of com-
parison are the recent clusterings, for the left and right
hemispheres, from Glasser et al., presented in Figure 5.
However, we also consider a simple baseline, given by
discarding {99, 99.1, . . . , 99.8, 99.9, 99.91, . . . , 99.98,
99.99}% of the sample covariance matrix entries: i.e.,
keep entries with the largest magnitudes (c.f. [31]) in
order to generate marginal correlation graphs. This
baseline lets us probe the comparative advantage of
using marginal vs. partial correlations. To quantita-
tively compare clusterings, we consider a variant of
the Jaccard score; details are in the supplement.

Results. The top and middle rows of Table 2 present
the best clusterings generated by the Cov variant of
HP-CONCORD, followed by the persistent homol-
ogy and Louvain methods, respectively, when com-
pared to those of Glasser et al. presented in Figure 5,
according to the (modified) Jaccard score. The bottom
row presents the best clusterings generated by thresh-
olding the sample covariance matrix at various levels.
The left and middle columns present the results for the
left and right hemispheres, respectively. We see that
the persistent homology clusterings perform the best,
in terms of Jaccard score, across both hemispheres.

Qualitatively, the persistent homology clusterings are
able to identify several clusters of interest to the neu-
roscience community (c.f. Figure 3 in [20]); this is cer-
tainly encouraging, since we do not expect perfect re-



Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

Left hemisphere Right hemisphere Sparsity pattern for both hemispheres

H
P

-C
O

N
C

O
R

D
+

p
.

h
o
m

o
lo

g
y

λ1 = 0.48, λ2 = 0.39, ε = 3, λ1 = 0.5, λ2 = 0.39, ε = 3, λ1 = 0.48, λ2 = 0.39, ε = 3,
% of best score = 100 % of best score = 100 % of best score = 100

H
P

-C
O

N
C

O
R

D
+

L
o
u
v
a
in

λ1 = 0.64, λ2 = 0.13, k = 1, λ1 = 0.5425, λ2 = 0.39, k = 0, λ1 = 0.64, λ2 = 0.13, k = 1,
% of best score = 75.03 % of best score = 75.03 % of best score = 73.45

T
h
re

sh
o
ld

e
d

sa
m

p
le

c
o
v
a
ri

a
n
c
e

m
a
tr

ix
+

L
o
u
v
a
in

t = 99.9, k = 4 t = 99.9, k = 3, t = 99.9, k = 4,
% of best score = 32.24 % of best score = 32.45 % of best score = 32.24

Table 2: The left and middle columns present the best clusterings for the left and right hemispheres, respectively,
according to the (modified) Jaccard score, relative to those of Glasser et al.; the colors only serve to differentiate the
different clusters. The right-most column presents the sparsity patterns for both hemispheres yielding the best clustering
for the left hemisphere; black indicates a nonzero entry. The rows correspond to the various methods. The scores under the
figures are the percentages of the best Jaccard score attained; higher is better. Since the persistent homology clusterings
perform the best, these percentages are just 100. Also indicated are the tuning parameter values (λ1, λ2, ε, k, t) yielding
the best clusterings. The Jaccard scores, tuning parameter details, and an expanded set of results are in the supplement.

covery of all the clusters in Figure 5, as the latter clus-
ters rely on multiple exogenous data sources and a sig-
nificant amount of domain knowledge. Some examples:
the persistent homology clusterings seem to pick out
area 55b, involved in hearing; the lateral intraparietal
cortex (LIPv), involved in eye movement; and much
of the variation in the temporal cortex, involved in
processing information from the senses. On the other
hand, the Louvain method and the clusterings gener-
ated by the sample covariance matrix seem to miss
these clusters, as they appear overly smooth. All the
methods seem to miss Brodmann’s area 44, involved in
hearing and speaking, and the middle temporal visual
area (MT), involved in seeing moving objects.

Lastly, it is also interesting to analyze the sparsity
patterns of the HP-CONCORD estimates; details are
contained in the supplement, due to space constraints.

6 CONCLUSION

We presented HP-CONCORD, a communication-
avoiding distributed proximal gradient method for
estimating a sparse inverse covariance matrix from

“massive-scale” data. HP-CONCORD can fit ≈819
billion parameters (p = 1.28 million) in ≈17 minutes in
a distributed memory setting, and is an order of mag-
nitude faster than BigQUIC when fitting ≈800 million
parameters (p = 40k) in a shared memory setting. For
future work, it may be interesting to apply a divide-
and-conquer strategy based on a block structure as-
sumption, to further optimize the computation. We
also used HP-CONCORD to capture the functional
connectivity structure of the cerebral cortex as a par-
tial correlation graph, which, in turn, was clustered
into distinct regions; some regions showed good agree-
ment with a result from the neuroscience literature.

Acknowledgements. This work was supported in part by: the De-
partment of Energy’s Office of Science Advanced Scientific Comput-
ing Research (DOE/SC/ASCR) X-Stack and Applied Mathematics pro-
grams at LBNL (DEAC02-05CH11231) and at UC Berkeley (UCB) (DE-
SC0008700); the Department of Defense; the Gordon and Betty Moore
Foundation at UCB (GBMF3834); the Alfred P. Sloan Foundation at UCB
(2013-10-27); a DOE Computational Science Graduate Fellowship (DE-
FG02-97ER25308); and by UCSB, including a Faculty Research Grant.
It used resources supported by DOE/SC/ASCR at the National Energy
Research Scientific Computing Center (DE-AC02-05CH11231) and the
Oak Ridge Leadership Computing Facility (DE-AC05-00OR22725). The
U.S. Government (USG) retains, and the publisher, by accepting the ar-
ticle for publication, acknowledges, that the USG retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for USG purposes.
We thank Ryan J. Tibshirani and J. Zico Kolter for the helpful feedback.



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

References

[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson,
M. Joshi, and P. Palkar. A three-dimensional
approach to parallel matrix multiplication. IBM
Journal of Research and Development, 39(5):575–
582, 1995.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Com-
munication complexity of PRAMs. Theoretical
Computer Science, 71(1):3–28, 1990.

[3] A. Ali, K. Khare, S.-Y. Oh, and B. Rajarat-
nam. Generalized pseudolikelihood methods for
inverse covariance estimation. In Proceedings of
the 20th International Conference on Artificial
Intelligence and Statistics, 2017.

[4] A. Ali, J. Z. Kolter, and R. J. Tibshirani. The
multiple quantile graphical model. In Advances in
Neural Information Processing Systems 29, 2016.

[5] S. Ashby, P. Beckman, J. Chen, P. Colella,
B. Collins, D. Crawford, J. Dongarra, D. Kothe,
R. Lusk, P. Messina, et al. The opportunities and
challenges of exascale computing. Summary Re-
port of the Advanced Scientific Computing Advi-
sory Committee Subcommittee, pages 1–77, 2010.

[6] A. Azad, G. Ballard, A. Buluç, J. Dem-
mel, L. Grigori, O. Schwartz, S. Toledo, and
S. Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplica-
tion. SIAM Journal on Scientific Computing,
38(6):C624–C651, 2016.

[7] K. Baba, R. Shibata, and M. Sibuya. Partial
correlation and conditional correlation as mea-
sures of conditional independence. Australian and
New Zealand Journal of Statistics, 46(4):657–664,
2004.

[8] G. Ballard, E. Carson, J. Demmel, M. Hoemmen,
N. Knight, and O. Schwartz. Communication
lower bounds and optimal algorithms for numeri-
cal linear algebra. Acta Numerica, 23:1155, 2014.

[9] O. Banerjee, L. El Ghaoui, and A. d’Aspremont.
Model selection through sparse maximum like-
lihood estimation for multivariate Gaussian or
binary data. Journal of Machine Learning Re-
search, 9:485–516, 2008.

[10] J. Besag. Spatial interaction and the statistical
analysis of lattice systems. Journal of the Royal
Statistical Society: Series B, 36(2):192–236, 1974.

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre. Fast unfolding of communities in

large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, 2008.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eck-
stein, et al. Distributed optimization and statisti-
cal learning via the alternating direction method
of multipliers. Foundations and Trends in Ma-
chine Learning, 3(1):1–122, 2011.

[13] J. Demmel, D. Eliahu, A. Fox, S. Kamil,
B. Lipshitz, O. Schwartz, and O. Spillinger.
Communication-optimal parallel recursive rectan-
gular matrix multiplication. In Parallel & Dis-
tributed Processing (IPDPS), 2013 IEEE 27th In-
ternational Symposium on, pages 261–272. IEEE,
2013.

[14] J. Demmel, M. Hoemmen, M. Mohiyuddin, and
K. Yelick. Avoiding communication in sparse ma-
trix computations. In Proceedings of the 22nd
IEEE International Parallel and Distributed Pro-
cessing Symposium, 2008.

[15] A. Devarakonda, K. Fountoulakis, J. Demmel,
and M. W. Mahoney. Avoiding communication in
primal and dual block coordinate descent meth-
ods. arXiv:1612.04003, 2016.

[16] J. Dongarra, J. Hittinger, J. Bell, L. Chacon,
R. Falgout, M. Heroux, P. Hovland, E. Ng,
C. Webster, and S. Wild. Applied mathematics
research for exascale computing. Technical report,
Lawrence Livermore National Laboratory, 2014.

[17] M. Driscoll, E. Georganas, P. Koanantakool,
E. Solomonik, and K. Yelick. A communication-
optimal N-body algorithm for direct interactions.
In Proceedings of the 27th IEEE International
Parallel and Distributed Processing Symposium,
2013.

[18] H. Edelsbrunner and D. Morozov. Persistent ho-
mology: theory and applications. In Proceedings
of the 6th European Congress of Mathematics,
2012.

[19] J. Friedman, T. Hastie, and R. Tibshirani. Sparse
inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, 2008.

[20] M. F. Glasser, T. S. Coalson, E. C. Robinson,
C. D. Hacker, J. Harwell, E. Yacoub, K. Ugur-
bil, J. Andersson, C. F. Beckmann, M. Jenkinson,
S. M. Smith, and D. C. Van Essen. A multimodal
parcellation of human cerebral cortex. Nature,
536(7615):171–178, 2016.

[21] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K.
Ravikumar, and R. Poldrack. Big & QUIC: sparse



Communication-Avoiding Optimization Methods for Sparse Inverse Covariance Estimation

inverse covariance estimation for a million vari-
ables. In Advances in Neural Information Pro-
cessing Systems 26, pages 3165–3173, 2013.

[22] P. Kambadur and A. Lozano. A parallel, block
greedy method for sparse inverse covariance esti-
mation for ultra-high dimensions. In Proceedings
of the 16th International Conference on Artificial
Intelligence and Statistics, 2013.

[23] K. Khare, S.-Y. Oh, and B. Rajaratnam. A
convex pseudolikelihood framework for high-
dimensional partial correlation estimation with
convergence guarantees. Journal of the Royal Sta-
tistical Society: Series B, 77(4):803–825, 2015.

[24] P. Koanantakool, A. Azad, A. Buluç, D. Mo-
rozov, S. Y. Oh, L. Oliker, and K. Yelick.
Communication-avoiding parallel sparse-dense
matrix-matrix multiplication. In Proceedings of
the 30th IEEE International Parallel and Dis-
tributed Processing Symposium, 2016.

[25] P. Koanantakool and K. Yelick. A computation-
and communication-optimal parallel direct 3-
body algorithm. In Proceedings of the Interna-
tional Conference for High Performance Comput-
ing, Networking, Storage, and Analysis, 2014.

[26] S. Lauritzen. Graphical Models. Oxford Univer-
sity Press, 1996.

[27] A. J. Lawrance. On conditional and partial cor-
relation. The American Statistician, 30(3):146,
1976.

[28] O. Ledoit and M. Wolf. Honey, I shrunk the sam-
ple covariance matrix. UPF Economics and Busi-
ness Working Paper, (691), 2003.

[29] C. Lim and B. Yu. Estimation stability with cross-
validation (ESCV). Journal of Computational
and Graphical Statistics, 25(2):464–492, 2016.

[30] H. Markowitz. Portfolio selection. Journal of Fi-
nance, 7(1):77–91, 1952.

[31] R. Mazumder and T. Hastie. Exact covariance
thresholding into connected components for large-
scale graphical lasso. Journal of Machine Learn-
ing Research, 13:781–794, 2012.

[32] N. Meinshausen and P. Bühlmann. High-
dimensional graphs and variable selection with
the lasso. The Annals of Statistics, 34(3):1436–
1462, 2006.

[33] N. Meinshausen and P. Bühlmann. Stability se-
lection. Journal of the Royal Statistical Society:
Series B, 72(4):417–473, 2010.

[34] S.-Y. Oh, O. Dalal, K. Khare, and B. Rajarat-
nam. Optimization methods for sparse pseu-
dolikelihood graphical model selection. In Ad-
vances in Neural Information Processing Systems
27. 2014.

[35] N. Parikh and S. Boyd. Proximal algo-
rithms. Foundations and Trends in Optimization,
1(3):123–231, 2013.

[36] A. Rothman, P. Bickel, E. Levina, and J. Zhu.
Sparse permutation invariant covariance estima-
tion. Electronic Journal of Statistics, 2:494–515,
2008.

[37] S. M. Smith, C. F. Beckmann, J. Andersson, E. J.
Auerbach, J. Bijsterbosch, G. Douaud, E. Duff,
D. A. Feinberg, L. Griffanti, M. P. Harms, et al.
Resting-state fMRI in the human connectome
project. NeuroImage, 80:144–168, 2013.

[38] E. Solomonik, A. Buluç, and J. Demmel. Mini-
mizing communication in all-pairs shortest paths.
In Proceedings of the 27th IEEE International
Parallel and Distributed Processing Symposium,
2013.

[39] E. Solomonik and J. Demmel. Communication-
optimal parallel 2.5d matrix multiplication and
LU factorization algorithms. In Proceedings of the
17th International Conference on Parallel Pro-
cessing. 2011.

[40] S. Soori, A. Devarakonda, J. Demmel, M. Gur-
buzbalaban, and M. M. Dehnavi. Avoiding com-
munication in proximal methods for convex opti-
mization problems. arXiv:1710.08883, 2017.

[41] R. van de Geijn and J. Watts. SUMMA: scalable
universal matrix multiplication algorithm. Con-
currency and Computation: Practice and Experi-
ence, 9(4):255–274, 1997.

[42] H. Wang, A. Banerjee, C.-J. Hsieh, P. K. Raviku-
mar, and I. S. Dhillon. Large-scale distributed
sparse precision estimation. In Advances in Neu-
ral Information Processing Systems 26, pages
584–592, 2013.

[43] H. Wang, A. Banerjee, C.-J. Hsieh, P. K. Raviku-
mar, and I. S. Dhillon. Large-scale distributed
sparse precision estimation. In Advances in Neu-
ral Information Processing Systems 26, 2013.

[44] S. Williams, M. Lijewski, A. Almgren, B. V.
Straalen, E. Carson, N. Knight, and J. Demmel.
s-step Krylov subspace methods as bottom solvers
for geometric multigrid. In Proceedings of the 28th
IEEE International Parallel and Distributed Pro-
cessing Symposium, pages 1149–1158, May 2014.



Koanantakool, Ali, Azad, Buluç, Morozov, Oliker, Yelick, Oh

[45] J. Won, J. Lim, S. Kim, and B. Rajaratnam. Con-
dition number-regularized covariance estimation.
Journal of the Royal Statistical Society: Series B,
75(3):427–450, 2013.

[46] M. Wytock and J. Z. Kolter. Sparse Gaussian con-
ditional random fields: algorithms, theory, and
application to energy forecasting. In Proceedings
of the 30th International Conference on Machine
Learning, 2013.

[47] Y. You, J. Demmel, K. Czechowski, L. Song, and
R. Vuduc. CA-SVM: communication-avoiding
support vector machines on distributed systems.
In Proceedings of the 29th IEEE International
Parallel and Distributed Processing Symposium,
2015.

[48] M. Yuan and Y. Lin. Model selection and estima-
tion in the Gaussian graphical model. Biometrika,
94(1):19–35, 2007.

[49] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society: Series B, 67:301–320, 2005.


	INTRODUCTION
	BACKGROUND
	HP-CONCORD
	NUMERICAL EXAMPLES
	CASE STUDY: GRAPH ESTIMATION FROM fMRI DATA
	CONCLUSION

