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ABSTRACT

A merge tree is a topological summary of a real-valued function on

a graph. Merge trees can be used to find stable features in the data,

report the number of connected components above any threshold,

or compute other topological descriptors. A local–global merge

tree provides a way of distributing a merge tree among multiple

processors so that queries can be performed with minimal com-

munication. While this makes them efficient in massively parallel

setting, the only known algorithm for computing a local–global

merge tree involves global reduction.

Motivated by applications in cosmological simulations, we con-

sider a restricted version of the problem: we compute a local–global

tree down to a threshold fixed by the user. We describe two algo-

rithms for computing such a tree via only local exchanges between

processors. We present a number of experiments that show the

advantage of our method on different simulations.
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1 INTRODUCTION

Topological methods play an important role in data analysis. By

examining the connectivity of scalar fields across a range of thresh-

olds, they identify stable features in the data and create indexing

schemes that allow users to quickly answer complicated queries.

This paper studiesmerge trees [7, 19]. Given a scalar field f : X → R,
a merge tree describes the structure of connected components in all

superlevel sets f −1[a,∞) of the field. As one varies the threshold a
from∞ to −∞, the connected components appear, grow, and merge

together, thus forming a tree; see Figure 1. Such a tree implicitly

labels connected components in every superlevel set and makes it

possible to efficiently answer queries about the data: (1) how many

connected components are there at level a? (2) what is the volume

of a connected component at level b that contains a point x ∈ X?
(3) how many connected components at level b exist at level a?

Merge trees are a popular tool in topological data analysis and

visualization. In particular, they can be used to analyze combustion
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Figure 1: Scalar function f : R→ R and its merge tree.

processes [5, 15], in function simplification [3]. The merge trees that

appear in scientific applications are often very large [4], requiring

supercomputers to compute and analyze them.

Our work is motivated by cosmological simulations, where the

field f represents the density of the matter in the universe. In these

simulations, merge trees are especially useful for the so-called halo
finding problem: identifying dense clumps of matter and computing

their properties, e.g., total mass. The halo finding problem can be

formulated as identifying connected components in the superlevel

set f −1[ρ,∞) that have at least one point with value greater than

ρ ′. This information is especially easy to recover from a merge

tree. Moreover, the branching structure of these trees also helps to

identify subhalos, i.e., subclusters of mass, whose distribution is

useful for identifying the type of object the halo represents.

Cosmological simulations [1] are some of the largest computa-

tions that run on modern supercomputers. They rely on advanced

techniques, such as adaptive mesh refinement (AMR), to produce

high fidelity results that adapt to the distribution of data. The in-

dividual snapshots of the simulations are dozens of terabytes (and

there are thousands of time steps in a typical run). To analyze the

results of these simulations, one has to develop efficient distributed

algorithms that can take advantage of the massively parallel hard-

ware. If one can identify halos in every time step of the simulation,

without slowing the simulation down significantly, it is possible

to feed these results back into the simulations to model physical

phenomena that cannot be simulated from the first principles. Ac-

cordingly, it is necessary to compute merge trees in situ [12] with a

running simulation, by working with its internal data representa-

tion (e.g., AMR) directly in memory, without saving data to disk.

The difficulty with computing topological information in parallel

is that topology by definition captures global connectivity, while

parallelization thrives on locality. In the context of merge trees,

this problem has motivated a line of work on local–global merge
trees, which we review in the next section. Although the existing

algorithms can compute local–global merge trees in situ with the

simulation, the computation involves a global reduction (an ex-

change of data following a butterfly network). This reduction is a

https://doi.org/10.1145/3295500.3356188
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major bottleneck, making it impossible to compute a tree for every

time step of the simulation. Furthermore, the existing algorithms

only work with flat domains, i.e., they cannot process AMR data.

In this paper, we address these two problems. We introduce two

algorithms for computing local–global trees that take advantage

of the additional structure of the problem. In cosmology, one is

only interested in density above a certain minimal threshold ρ —

there cannot be dense clumps of matter at densities below it. So

restricting the data to this superlevel set f −1[ρ,∞) captures all the
information relevant for halo finding. At the same time, this subset

consists of many separate connected components, which obviates

the need for a global reduction. Accordingly, our algorithms rely

only on local exchanges to augment the local data with all the

necessary global information. The result is an algorithm that is

two orders of magnitude faster than its predecessor. This speedup,

together with the ability to process AMR data, makes it possible to

analyze the individual time steps at the same rate that a simulation

produces them.

2 BACKGROUND AND RELATEDWORK

Merge trees. Let G = (V ,E) be a graph, and f : V → R a real-

valued function on its vertices V = {v1, . . . ,vn }. We assume, with-

out loss of generality, that the vertices are ordered by the function

value:

f (v1) < f (v2) < · · · < f (vn ).

For a ∈ R, we denote by Ga the subgraph induced by the vertices

with function value at least a. We call this subgraph the superlevel
graph at a. As a varies from f (vn ) to f (v1), the connected compo-

nents of the superlevel graphGa appear and merge together. The

merge tree of f records how this happens; see Figure 2.

By definition, the merge tree of f is the graph Tf = (V ,ET )
that has an edge (vi ,vj ) ∈ ET , with i < j, if and only if vi and vj
belong to the same connected component C of Gf (vi ), and there is

no vertex vk ∈ C such that f (vi ) < f (vk ) < f (vj ).
Intuitively, each vertex vi in the merge tree Tf represents the

connected component of vi in the superlevel graph Gf (vi ). The

edges represent the nesting relationship between the connected

components. We note that the merge treeTf is not a subgraph ofG .
If G is disconnected, then Tf is not a tree but a forest. Even though

in this paper we are interested exactly in the case whenTf consists

of many relatively small connected components, we simplify the

language and call it a merge tree.

Triplet merge trees. Throughout the paper we rely on the triplet
merge tree representation, introduced by Smirnov and Morozov

[20]. This representation transforms the merge tree into a directed

tree of its subtrees. Specifically, a directed edge (vi ,vj ) with label

vk belongs to the triplet merge tree if and only if vertex vi has the
highest function value of all the vertices in its connected component

of Ga for a ∈ [f (vi ), f (vk )), and vi falls into the same connected

component asvj inGf (vk ). See Figure 2 on the right for an example

of a triplet merge tree.

The authors of [20] show how to compute the triplet merge tree

directly, bypassing the computation of the ordinary merge tree first.

They show that doing so is faster in practice than computing the

ordinary merge tree. Furthermore, the computation can be run in

parallel in shared memory by merging edges independently, in a

lock-free manner.

The authors introduce a procedureMerge(T1,T2,E) that we rely
on in our paper. Given a function f : V → R on the vertices of a

graph G, let f1 and f2 be its restrictions to two disjoint subsets V1
and V2, with V1 ⊔V2 = V . If T1 and T2 are the triplet merge trees of

f1 and f2, and E is the set of edges ofG connecting the two subsets,

then Merge(T1,T2,E) returns the triplet merge tree of f .

Grids. Since merge trees are often computed for data on d-dimen-

sional grids, it is necessary to convert a grid to a graph, to fit with

the definitions given so far. There are multiple ways to do this.

Throughout the paper we use the Freudenthal triangulation [11]:

two grid cells with indices x = (x1, . . . ,xd ) andy = (y1, . . . ,yd ) are
connected with an edge if and only if either all differences (xi −yi )
are in {0, 1} or all of them are in {−1, 0}. See Figure 3.

Adaptive Mesh Refinement. Modern simulations rely on ad-

vanced techniques to accurately and efficiently represent the simu-

lated phenomena. One such technique, adaptive mesh refinement

(AMR), uses different resolution in different regions of the domain,

to efficiently allocate computational resources.

An AMR mesh consists of a set of grids, each on its own level

li , with higher levels corresponding to finer grids. For each grid,

we know its refinement ri , relative to the base level. A single cell

on level i − 1 is covered by (ri/ri−1)
d
cells on level i . For each grid,

we also know the bounds of the region that it covers in the domain.

Cells of a grid on level i that are covered by a cell of a grid on level

i + 1 are called masked, and their values must be ignored. A cell

cannot be partially masked, and regions of the grids on the same

level are disjoint (but two grids on the same level can be adjacent).

Once again we must convert an AMR mesh into a graph. Given

such a mesh, let vertices of G be all the cells that are not masked.

We define the inner edges of G by fixing the graph structure inside

a single grid using the Freudenthal link. What remains is to define

the outer edges that connect different grids. If two adjacent grids

are on the same level, then we use the same Freudenthal link to

connect their boundary cells.

If one grid is on a higher level, then we expand it by one layer

of ghost cells, and extend the graph to include them. Every ghost

cell is contained in the unique cell of the grid at one level lower.

Replacing the ghost cell by the cell that contains it, we replace the

edges connecting boundary cells and ghost cells with the edges

connecting the boundary cells of the finer grid with the cells of the

coarser grid. Multiple boundary–ghost edges can map to the same

fine–coarse edge. See Figure 4 for an illustration.

Parallel setup.We are interested in the setting, where the domain

of the function f : V → R is distributed among different processors.

Specifically, we assume there is a global graph G = (V ,E) with a

function f : V → R and a partition of its verticesV = V1 ⊔ · · · ⊔Vb .
EveryVi is kept in a block i , which also stores f

��
Vi

and all the edges

that contain at least one vertex in Vi , Ei = {(u,v) | u ∈ Vi or v ∈
Vi }. In the context of AMR meshes, the partition of the vertices

corresponds to the individual grids that constitute the AMR mesh:

each Vi is the set of vertices that belong to a single grid.

Our terminology of blocks comes from our use of the DIY li-

brary [16] — a data-parallel library built on top of MPI — where



Local–Global Merge Tree Computation with Local Exchanges SC ’19, November 17–22, 2019, Denver, CO, USA

A

B

C

D

X

Y

Z

V W

A

B

C

D

X

Y

Z

A

C

B D
X

Y

Z

V1 V2

f

Figure 2: Function f on a graph (left), its merge tree (center), and its triplet merge tree (right).

Figure 3: Freudenthal link of a vertex in a two-dimensional

grid.

Figure 4: An AMRmesh with three grids: two at level 1, and

one at level 2, with refinement r2 = 2. The outer edges of the

finer grid are shown. They are constructed by adding a layer

of ghost vertices (in light gray) to the finer grid, extending

the graph to include them, and remapping the ghost vertices

to the coarser grid.

the main unit of data is called a block. In the simplest situation, one

block is assigned to one processor, the configuration we use in this

paper.
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Figure 5: Local–global trees for the blocksV1, on the left, and

V2, on the right, in Figure 2.

We define a graph H whose vertices are blocks B = {1, . . . ,b}.
An edge connects two blocks i and j if and only if there is an edge

between some pair of vertices u ∈ Vi and v ∈ Vj in G.
Our algorithms rely on local communication between blocks.

Every block i maintains the list of neighbors N i
, with which it

is able to communicate. During the execution of our algorithms,

the neighborhood of a block may change: block i maintains its

neighborhood N i
, by adding or removing blocks.

Local–global merge trees.Morozov and Weber [17] introduced

the local–global merge tree representation, in which every block

stores detailed information about its local vertices, together with

just enough global information to answer global queries. Signifi-

cantly, no processor has to store the full tree, and the queries can be

answered with minimal communication. The local–global represen-

tation is especially well-suited for in situ parallel analysis [10, 17].
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The local–global tree is defined with respect to a subset of ver-

tices of the full domain. It is simpler to define in the triplet repre-

sentation. Suppose the full triplet merge tree is denotedTf . Given a

subsetW ⊆ V , the (triplet) local–global tree with respect toW ,TWf
consists of the union of all the paths inTf from the vertices ofW to

the root.TWf may contain vertices outside ofW , if they lie on some

path from a vertex inW to the root. These extra vertices provide

the eponymous global information. Below, we call the operation

of keeping only the paths from the local vertices to the root, i.e.,

going from Tf to TWf , sparsification.
Given a function f : V → R, where V are the vertices of the

global graphG , and a partition of its verticesV1 ⊔ . . .Vb , the goal is

for each block to computeTVif . See Figure 5 for an illustration of the

local–global trees for the function in Figure 2 partitioned into two

blocks. Although not apparent from this tiny example, an important

feature of the local–global trees is that they are significantly smaller

than the full global tree; in fact, they are only a little larger than the

strictly local trees, while being substantially more versatile [17].

The crucial advantage of the local–global tree is that once com-

puted, each block can determine completely locally what connected

component of the full merge tree Tf any one of its local vertices

belongs to on any level. This basic question is central to a large num-

ber of queries: assigning unique labels to connected components

at a given level, computing volumes of connected components, etc.

Once the local–global representation is computed, these queries

can be answered locally without any communication between the

blocks, except to report the results.

Morozov and Weber [17] give an algorithm to compute a local–

global tree via a global reduction between the processors. Although

the resulting representation is efficient for querying, the global

reduction itself can be expensive. In this paper, we consider a re-

stricted version of the problem that motivates replacing the global

reduction with a local exchange, greatly improving the perfor-

mance.

Restricted problem. Given a threshold ρ ∈ R, we are interested
in the local–global merge tree ofGρ , the superlevel graph. In many

applications, all the interesting content of a given function lies

above such a threshold, and as we show below, such a restriction

significantly improves computation.

We use the following terminology throughout the paper. Given

a threshold ρ ∈ R, we refer to the vertices v with f (v) < ρ as

low and those with with f (v) ≥ ρ as high. By definition, Gρ is the

graph obtained from G by removing all low vertices. Our goal is

to compute the local–global merge tree of f on Gρ in the sense of

[17].

We note that because the block graph H is constructed indepen-

dently of the threshold ρ, it depends solely on G: it can happen

that there is no edge in Gρ between blocks i and j, but they are

connected in H .

2.1 Related Work

The traditional way to compute merge trees in serial relies on a

variation of the classic Kruskal’s algorithm [9]. We note that merge

trees are different from contour trees, which track level sets, rather

than superlevel sets. Carr et al. describe an algorithm to compute a

contour tree from two merge trees [7].

Considerable work has been done on computing merge trees in

shared memory [6, 8, 13, 20], and it remains an active research di-

rection. These results are interesting, but ultimately independent of

the distributed setting we are interested in. All of those algorithms

can be combined with the techniques described in this paper.

Pascucci and Cole-McLaughlin [19] describe an algorithm suit-

able for using in distributed memory. It performs a global reduction,

merging trees from different processors in pairs. This approach

has two ultimate problems: the reduction doesn’t scale past a small

number of processors, and the final global tree is difficult to work

with, since for large data sets it does not fit in the memory of a

single node.

Two independent approaches address this limitation. Morozov

and Weber [17] introduce local–global trees, described in the pre-

vious subsection, that perform a swap reduction (rather than the

merge reduction of [19]). Most importantly, instead of computing

one large global tree, they compute small local–global trees, one per

processor, which are convenient for subsequent analysis, including

for deriving local–global contour trees [18].

The second approach relies on the restricted version of the prob-

lem, described in the previous subsection. Landge et al. [14] de-

scribe an algorithm to compute merge trees in a way similar to

the neighborhood-growing Simple algorithm we describe in Sec-

tion 3.2. The principal difference is that their algorithm performs a

fixed number of rounds, prescribed a priori as input, and as such

only guarantees that features below a certain size are computed

correctly. In contrast, our algorithm adapts the number of rounds

to the problem, increasing them as needed, until the correctness of

the output (the solution to the restricted problem) is guaranteed.

Additionally, besides computing local–global trees and processing

AMR data, we also introduce the Components algorithm, in Sec-

tion 3.3, which our experiments in Section 4 show performs better

than the Simple algorithm.

3 ALGORITHMS

We describe two algorithms, Simple and Components. Both algo-

rithms are implemented using DIY library [16] and follow the bulk

synchronous parallel (BSP) model [21]. The main unit of data is

a block, which knows its neighbor blocks and can communicate

with them. The algorithms work in multiple rounds, expanding

the neighborhoods with which they communicate, until they see

enough of the domain to be certain that they have constructed the

complete local–global trees. The difference between the algorithms

is in how much data they send to other blocks.

The first algorithm, Simple, sends its full original tree to each

block in its neighborhood. The second algorithm, Components,

splits the local tree into connected components and grows each

such subtree independently, sending it only to those blocks that

have trees that connect to it.

3.1 Computing outer edges

Since we are working with a subset of the function above the given

threshold ρ, the first step in both algorithms is to find active vertices

that belong to the subgraph Gρ . Each block must also identify its
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outer edges that connect its vertices to other blocks. Because each

block has only access to its local data, some extra care is required

to identify the outer edges. An edge (u,v) in the full graphG may

connect vertexu active in the local block (i.e., f (u) ≥ ρ) to a remote

inactive vertexv (with f (v) < ρ). To prune such edges, Algorithm 1

exchanges the outer edges between the neighboring blocks and

takes their intersection. This exchange ensures that the remaining

edges have both vertices above the threshold ρ.

Algorithm 1 ComputeOuterEdges

function ComputeOuterEdges(ρ)
for all block i do
▷ use ρ to identify high vertices.

V i ← {unmasked high vertices of block i}
Ei ← {outer edges from block i}
for all j ∈ N i

do

Eij ← {edges of E
i
that end in block j}

Send Eij to j

Exchange

for all block i do
EiR ← ∅ ▷ set of edges received by block i

for all j ∈ N i
do

Receive E
j
i from j

EiR ← EiR ∪ E
j
i

Ei ← Ei ∩ EiR

In order to compute the outer edges locally, we use the AMR

mesh to determine the geometry of the neighboring grids. Each

block has the list of all of its neighboring grids; this is the graph

H described in the previous section. Any outer edge, by definition,

connects a local vertex to a vertex of one of these neighbors. We

assume the geometry of the neighboring grids — their extents, level,

and refinement — is known to the block. This allows each block to

compute all of its outer edges in the full graph G. In Algorithm 1,

Ei denotes the set of all outer edges for a block i .

3.2 Algorithm Simple

Algorithm 2 Simple.

ComputeOuterEdges(ρ) ▷ Algorithm 1

for all block i do
InitSimple(i) ▷ Algorithm 3

while not all blocks are done do

for all block i do
SendSimple(i) ▷ Algorithm 4

Exchange

for all block i do
ReceiveSimple(i) ▷ Algorithm 5

The initialization (Algorithm 3) in the Simple algorithm (Algo-

rithm 2) includes computing the local tree T i on active vertices

Vi . We sparsify the tree with respect to the boundary vertices of

the block i . We save the original tree and the original neighbor

blocks in variables T io and N i
o . We use them later in the algorithm,

after the tree T i and the neighborhood N i
grow as a result of the

computation. Recall that N i
denotes the set of blocks with which

block i can communicate; it is initialized with the neighbors of

block i in the graph H .

Algorithm 3 Initialization in algorithm Simple.

function InitSimple(i)
T i ← local tree on block i
Sparsify(T i )
N i ← {j : (i, j) ∈ H }
T io ← T i ▷ T io will never change

N i
o ← N i ▷ N i

o will never change

After initialization we start the communication process. In each

round, every block sends (Algorithm 4) its original local tree T io , its
outer edges Ei , and its original neighborhood N i

o to all blocks in its

current neighborhood N i
that have not received this information

in previous rounds.

Algorithm 4 Sending phase of algorithm Simple.

1: function SendSimple(i)
2: for all r ∈ N i

do

3: if r not marked as processed then

4: Send (T io ,Ei ,N
i
o ) to r

5: Mark r as processed

In the receiving phase (Algorithm 5), every block receives local

trees of its neighbors T
j
o and merges them into its current tree T i .

The edges E j are either contained in the current neighborhood N i
,

or they connect a vertex from N i
with a vertex of a block outside

of N i
. The former edges are used in the merge process; the latter

edges are accumulated in the variable Ẽ, which stores the outer

edges of the expanded neighborhood.

Consider an edge (u,v) from Ẽ. Its vertex u is contained in the

treeT i after we merged the corresponding treeT
j
o into it. Its vertex

v belongs to a block with which the current block i has not com-

municated yet. If there is a path in graph Gρ connecting vertex u

to the original local tree T io , then block i is not done: our algorithm
must continue to the next round. If there is no such path to any

edge in Ẽ, then we have the complete local–global tree for the block

i .
Figure 6 illustrates an example. In the first round, two of the

central block’s local connected components leave the neighborhood.

The block sends its local tree to the eight neighboring blocks. In the

second round, because the connected component in the top part of

the central figure leaves the neighborhood, the block is not done. It

sends its tree to the next layer of neighboring blocks inH . After the

third round, all the connected components of the central block are

contained entirely in the known neighborhood N i
, and the central

block declares itself done.

3.3 Algorithm Components

The first algorithm, Simple, sends the entire local tree to all of its

neighbors; each block expands its neighborhood using only the
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Figure 6: Three rounds of the Simple algorithm from the point of view of the central block. Its communication neighborhood

is highlighted in yellow. The neighborhood whose trees are known to it is highlighted in blue. Components in green are

contained entirely in the blue neighborhood. Components in red leave it. Once every local component is green, the block is

complete.

Algorithm 5 Receiving phase of algorithm Simple.

1: function ReceiveSimple(i)
2: Ẽ ← ∅
3: Ñ i ← ∅

4: for all (T
j
o ,Ej ,N

j
o ) in incoming do

5: T i ← merge(T i ,T
j
o ,E

j
)

6: Ẽ ← Ẽ ∪ {edges of Ej that do not end in a block of N i }

7: Ñ i ← Ñ i ∪ N
j
o

8: donei ← True

9: for all (u,v) ∈ Ẽ do

10: ▷ outgoing edge connected to the original tree

11: if u or v is connected in T i to T io then

12: donei ← False

13: Break

14: N i ← N i ∪ Ñ i ▷ Expand the neighborhood

structure of the graph H . The second algorithm, Components (Al-

gorithm 6), is more selective. It handles each connected component

of the local tree separately and sends the corresponding subtree

only to the blocks with a tree connected to it.

Algorithm 6 Components.

ComputeOuterEdges(ρ) ▷ Algorithm 1

for all block i do
InitComponents(i) ▷ Algorithm 7

while Not all blocks are done do

for all block i do
SendComponents(i) ▷ Algorithm 8

Exchange

for all block i do
ReceiveComponents(i) ▷ Algorithm 9

In the initialization function (Algorithm 7), each block i com-

putes its local tree T i and breaks it up into connected components,

T i
1
, . . . ,T ini . The set of outer edges E

i
is split into Ei

1
, . . . ,Eini , where

edges Eij emanate from the vertices of the tree T ij .

Each component also maintains three sets Aik , B
i
k and Cik :

• Set Aik stores the blocks, to which the component T ik must

be sent. These are the blocks that we know contain a tree

connected to T ik . We initialize Aik using the set of edges Eik .

• Set Bik stores the blocks, to which we have already sent the

tree T ik .

• Set Cik stores the component trees T a
b that are connected to

the tree T ik in the global tree. We identify each component

tree by its highest vertex,vab . We initializeCik using the outer

edges Eik , after modifying Algorithm 1 to send with each

outer edge the identifier of the component, to which its local

vertex belongs.

Algorithm 7 spells out the initialization details.

Algorithm 7 Initialization in algorithm Components.

1: function InitComponents(i , ρ)
2: T i ← local tree in block i
3: T i

1
, . . . ,T ini ← connected components of T i

4: for k = 1 . . .ni do
5: Eik ← outgoing edges from T ik to neighboring blocks

6: Aik ← { i } ∪
{
a | ∃e ∈ Eik that ends in block a

}
7: Bik ← { i }

8: Cik ←
{
vik

}
∪

{
vab | ∃e ∈ Eik that ends at T a

b

}
In the sending phase (Algorithm 8), a block iterates over its

connected components T ik . If there are blocks with trees connected

toT ik , but to which we haven’t yet sent this tree — in other words, if

Aik − B
i
k is not empty — the block sends the componentT ik with its

edges to each of these blocks. Afterwards, all blocks inAik are added

to Bik to mark them as processed. Hence, each component is sent at

most once to any block. If the receiving phase of the previous round

added new components to the set Cik , then we send the set Cik to

all blocks Aik , connected to the tree T ik , since they are connected to

them as well.

The bulk of the work happens in the receiving phase (Algo-

rithm 9). First, block i collects all the incoming treesT a
b and merges

them into its growing tree T i . Then, we need to update the sets of
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Algorithm 8 Sending phase in algorithm Components.

1: function SendComponents(i)
2: for k = 1 . . .ni do
3: for all blocks r in Aik − B

i
k do

4: Send (T ik ,E
i
k ) to r

5: Bik ← Aik ▷ mark blocks in Aik as processed

6: if Cik changed in the previous round then

7: for all blocks r in Aik do

8: Send Cik to r

connected trees Cik , which we do by identifying which incoming

trees T a
b connect to which component T ik of the block’s tree. The

second for-loop takes care of this update.

Algorithm 9 Receiving phase in algorithm Components.

1: function ReceiveComponents(i)
2: for all incoming (T a

b ,E
a
b ) do

3: T i ← merge(T i ,T a
b ,E

a
b )

4: for k = 1 . . .ni do
5: Ĉik ← Cik
6: for all incoming Ca

b do

7: if T a
b and T ik are connected in T i then

8: Cik ← Cik ∪C
a
b

9: for k = 1 . . .ni do

10: Cik ←
⋃ {

Cim | m = k or T ik ,T
i
m are connected in T i

}
11: Aik ←

{
a | ∃ vab ∈ C

i
k

}
12: N i ←

⋃ni
j=1A

i
j

13: donei ←
(
∀k = 1 . . .ni : C

i
k = Ĉ

i
k

)
After the set of connected trees Cik is computed, we put into

the set Aik the identifiers of all blocks a such that at least one

of their component trees T a
b is in Cik . Finally, in the last line of

Algorithm 9, we determine if the block is finished by whether any

set of connected componentsCik has changed. We take a logical-and

of all such results via a global reduction (MPI_Allreduce): as long
as a single block is not finished, the algorithm continues.

Optimization. In order to update the sets of connected trees Cik
more effectively, we use the connectivity information provided by

the merge tree T i . If several components T a
b get connected after

calling the merge procedure, then their union has a unique deepest

vertex — it is the vertex v̂ab that has the maximum function value

among all vertices vab . The converse also holds: If components T a
b

andT cd have the same deepest vertex inT i , then they are connected.

We take advantage of these observations and implement the

connectivity tests in Lines 7 and 10 of Algorithm 9 as follows. We

create a hash table K that maps the verticesvab identifying different

components of T i to sets of block identifiers. We iterate over all

received components T a
b and compute the deepest vertex v of vab

Block: 1 2 3 4 5 6 7 8 9

Round 1:

Round 2:

Round 3:

Round 4:

Round 5:

Figure 7: The Components algorithm’s execution on nine

blocks with a single component that spans all of them. Col-

ors indicate the status of the component from the point of

view of the left-most block: green means the component

has been merged into the block’s tree; blue means the block

knows about this component, but has not received it yet.

in the current tree T i . Then we add all the component identifiers

from Ca
b to the set K[v] in the hash table.

After running a similar loop over all local components T ij , we

have the hash table with the correct values of sets Cij . All that

remains is to iterate once again over all local components T ij , find

their deepest vertex v in T i and set the Cij to the set K[v]. This

optimization is effective because finding the deepest vertex in a

triplet merge tree is straightforward and computationally efficient.

Illustration. Figure 7 highlights a key feature of the Components

algorithm: the components grow exponentially (thus the algorithm

finishes in logarithmic number of rounds, in the size of the largest

component). The example in the figure illustrates a linear chain of

blocks, with a single component across all of them. The components

that have beenmerged into the tree of the left-most block are shown

in green; their blocks are in the set B1
1
. The components known to

the left-most block, but with which it has not communicated yet,

are shown in blue. The green and blue components make up the set

C1

1
. The block of the blue components are in the difference A1

1
− B1

1
.

Because during each round a block sends all the components

known to it, that are connected to a particular component, the sets

Cij grow exponentially. For example, after round 3, block 5 knows

about all nine connected components. After it communicates with

block 1, between rounds 3 and 4, block 1 learns about all nine

components as well. It communicates with them between rounds 4

and 5, and thus finishes its local tree in round 5.

Figure 8 illustrates the execution of the Components algorithm

on the same example as Figure 6. Its salient point is that, in contrast

to the Simple algorithm, only components connected to some local

component are communicated to the block. This translates in sub-

stantial reduction in communication, computation, and memory

usage that are responsible for the better experimental performance

in Section 4.
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Figure 8: Execution of the Components algorithms from the point of view of the central block, on the same input as Figure 6.

The color scheme is the same as in Figure 7: green components have been merged into the block’s tree; blue components are

known to the block, but have not been received yet.

3.4 Correctness

We sketch why our algorithms correctly compute the local–global

trees, forgoing the formal proofs for lack of space.

Observation 1. If the domain of the function f is disconnected,

then the merge tree of f is the disjoint union of the merge trees of

f restricted to each connected component. The component merge

trees can be computed independently from each other.

Observation 2. Suppose that the domain of the function f is con-

nected and distributed among blocks 0, 1, . . . ,n. If blocks 1, . . . ,n
send their merge treesT i and all outer edges Ei to block 0, then, af-

ter merging the received trees intoT 0
in arbitrary order,T 0

contains

the correct global merge tree of f .

Observation 1 is immediate from the definition of the merge tree.

Observation 2 follows from the results of [20]. We can think of

outer edges as the glue that connects different pieces of the global

tree together: if we have all components of the tree and glue each

outer edge, we get the complete merge tree.

In both algorithms, blocks always send merge trees with all outer

edges that belong to them, and in the receiving phase they merge

every tree they received into their local treeT i . Observations 1 and 2
imply that correctness is a consequence of the following statement.

Statement 1. If at the end of round t there exist blocks i and j
such that there is a path in Gρ connecting v ∈ V i

and u ∈ V j
, and

block i did not send the tree that contains v to block j, then the

algorithm does not terminate at round t .

Simple algorithm. Statement 1 is immediate for this algorithm.

Formal proofs follow by induction on the number of rounds.

Lemma 1. At the beginning of communication round t :

N i = { j | dH (i, j) ≤ t } ,

where dH denotes the graph distance in the graph H of blocks.

Block i sends its tree to block j at round t if and only if dH (i, j) = t .

To prove Statement 1, suppose there is a block j that needs the
original tree of block i , but it has not received it. This means that

there is a vertex x in V i
and vertex y ∈ V j

that are connected by a

path in Gρ . If block i has not sent its tree to block j, then there is

an edge e = (u,v) on this path that goes from one of the processed

blocks of N i
to a block to which the original tree T io has not been

sent. This edge forces the termination condition to be false in the

receiving phase.

The fact that Simple algorithm terminates at some point also

follows from Lemma 1: in the worst case (when the domain is

connected and covers all blocks), the neighborhood of each block

contains all blocks after at most diam(H ) rounds.

Components algorithm. We define H to be the graph whose

vertices are all local component trees,

V (H) =
{
T ij | i = 1, . . . ,n, j = 1, . . . ,ni

}
;

T a
b and T cd are connected inH if and only if there is an edge in Gρ
between some vertices of T a

b and T cd . By dH(T
a
b ,T

c
d ) we denote the

graph metric onH , i.e., the length of the shortest path betweenT a
b

and T cd . The following lemma summarizes some basic properties of

the Components algorithm.

Lemma 2.

(1) Sets Aik , B
i
k and Cik only grow.

(2) If block i receives (Ca
b ,v

a
b ), then it has already received the

corresponding component tree T a
b . So its deepest vertex vab

is present in T i .
(3) In all rounds, Cik is a connected subset of the tree graphH ,

Aik and Bik are connected subsets of the block graph H .

(4) After t rounds of communication, every component tree T a
b

such that dH(T
i
j ,T

a
b ) ≤ 2

t
is contained in Cij .

The last statement of the lemma, Item 4, is the only one not

immediate from the algorithm description, but it can be proven by

induction. Figure 7 gives a hint why it is true.

The information flows in the Components algorithm as follows:

each tree T ik has its own set Cik that grows exponentially. This set

is always a connected subset of the component of T ik inH . Each

time a new element is added to Cik , it is reported to all blocks that

contain at least one tree inCik . The information spreads along paths

in graphH , each time to a larger distance.

Proof of Statement 1. Suppose that component T ik declares itself

done at the end of communication round t , and there are blocks

that need T ik , but have not received it yet. This means that there

exists a local component treeT km such that (a) block k , to whichT km
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belongs, has not receivedT ij , so k < B
i
j ; (b)T

k
m andT ij belong to the

same connected component of the global merge tree.

The last condition implies that there is a path in graphH that

connects T ij and T
k
m . Let us denote this path as

T ij → T a1
b1
→ · · · → T ar

br
→ T km .

We can assume, without loss of generality, that all blocksa1, . . . ,ar
have already received T ij . Because there is an edge between T ar

br
and T km in graph H , there is an outer edge between them in Gρ .

Therefore, vkm is added to Car
br

during initialization.

Since we assumed tree T ij was not sent to block k , it follows

tree T ar
br

was not sent to tree T ij : otherwise, by the end of round

t , the tree T ij would be aware of T km , and then it cannot declare

itself done before sending itself to block k . This implies that com-

ponent T ar
br

is not done at round t , since it is now aware of T ij . So

the algorithm continues. The Components algorithm eventually

terminates because in each iteration at least one Cik grows. □

4 EXPERIMENTS

Experiments were performed on two machines of the National

Energy Research Scientific Computing Center (NERSC), Edison and

Cori. Edison is a Cray XC30 supercomputer with 5,586 nodes, each

node with 24 CPU cores and 64 GB of RAM. Each node has two

sockets with an Intel Ivy Bridge 12-core processor. Cori is a Cray
XC40 supercomputer with two types of nodes, Haswell and KNL.

We used both types of nodes. There are 9,688 KNL nodes, each

with a single-socket 68-core Intel Xeon Phi 7250 processor, and

2,388 Haswell nodes, each with two sockets, each with a 16-core

Intel Xeon E5-2698 v3 processor. The code was compiled with GCC

compiler (version 7.3.0).

Cosmology.We used data sets from cosmological simulations of

the Nyx project [1]. The function f is the (normalized) density of

the matter distribution for different values of cosmological redshift

z given on a 3-dimensional grid. We ran experiments for z = 2,

comparing the running times of the two algorithms. We do not

include the IO time, because in the experiments the data was read

from disk and written back to it, while in real application the code

is going to be used in situ, with data residing in the memory. So we

show only the essential computation, including local initialization

and communication phase. Our experiments used data sets of sizes

512
3
, 1024

3
, 2048

3
, and 8192

3
.

In Figure 9, we compare Simple and Components algorithms on

a single 2048
3
dataset, running on Cori Haswell nodes. The figure

illustrates the average of five runs, for each data point, with the

standard deviation shown as error bars. As the figures illustrate,

Components algorithm runs approximately 1.5 times faster than

Simple algorithm. In Components algorithm, blocks send only

those component trees that are needed. Even though maintaining

the A, B and C sets introduces overhead, it is minimal compared to

the reduced communication and computation. We conclude that for

such single-grid data Components algorithm is always preferable.

The only advantage of Simple is its simplicity, which allows for

fast reference implementation.
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Figure 9: Strong scaling of Simple and Components, av-

eraged over five runs, with standard deviation error bars,

on a 2048
3
snapshot of a Nyx simulation. (Cori, Haswell)
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Figure 10: Strong and weak scaling of algorithm Simple.

(Edison)

Figure 9 highlights a crucial disadvantage of Simple algorithm:

for sufficiently high core counts, the blocks become small and com-

ponents that previously fit inside a neighborhood of a block, now

leave its bounds, triggering the second round of the algorithm.

Because all blocks have to participate in each round of Simple

algorithm, the second round is responsible for the increased com-

munication and running time of Simple algorithm on 8Ki cores.

(In contrast, in Components algorithm, only a few blocks are in-

volved in the second round.) The increased communication is also

responsible for a considerably larger variability in running times,

as indicated by the error bars.

In order to see how each of the algorithms scales, we plot the

timings for all 3 data sets: Figure 10 is for Simple algorithm and

Figure 11 for Components algorithm. We observe that Simple

algorithm stops scaling by the time the number of blocks increases

from 4096 to 8192. The reason is that at this threshold, a single

round of communication becomes insufficient. When we go to the
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second round, instead of communicating with 26 neighbors, each

block must communicate with 98 neighbors. The strong scaling of

Components algorithm is better, but not perfect. For 2048
3
input,

going from 512 to 4096 blocks, we get strong scaling efficiency of

67%; it drops to 42% going from 512 to 8192 blocks. As for weak

scaling, whenwe go from 512
3
data set on 512 cores to 1024

3
data set

on 4096 cores, the running time of both Components and Simple

algorithm stays practically the same. The ratios are 1.09 and 1.06. As

number of processors gets larger, and we run out of useful work, the

ratios get worse: e.g., going from 1024
3
data set on 1024 processors

to 2048
3
data set on 8192 processors increases the running time

roughly by a factor of 2.7.

We also compare our code with the existing code for local–global

merge tree computation, to demonstrate the practical efficiency of

our results. This comparison might seem unfair: the existing code

(implementation of [20] and [17]) must compute a much larger

tree on the whole graph G, so it will inevitably run much slower.

However, in the cosmological calculations, the merge trees are
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Figure 13: Comparison of the algorithms on 8192
3
file

with fixed number of blocks. (Cori, KNL.)

analyzed at a given threshold ρ. For example, it is necessary to

identify regions with high density and to integrate the density on

each component individually. From the application’s point of view,

the two codes accomplish exactly the same task: we compare the

time it takes to compute the integral using the old and the new codes.

Figure 12 illustrates the results for the 2048
3
data set. Our algorithm

outperforms the global reduction by two orders of magnitude: while

the global reduction requires more than 3 minutes, our algorithm

finishes computation in 3 seconds or less. Furthermore, the missing

timing for the old code on 512 cores is because the available RAM

is not enough to accommodate the intermediate trees during the

reduction.

In order to evaluate our algorithms on a data set used in the

state-of-the-art simulations, we applied our code to a 8192
3
dataset.

These datasets are stored in the internal file format of Nyx, which in

turn uses AMReX [22] library. The decomposition of the domain is

predefined: we are bound to use 262,144 blocks. These experiments

were performed on Cori, using the KNL nodes, but without using

hyper-threading: we assigned one MPI process per core and ran the

algorithms on 32768, 65536, 131072, and 262144 cores. The timings

of Simple and Components algorithms for one input are plotted

in Figure 13. Components algorithm is about 20-30% faster than

Simple, and the two algorithms exhibit similar scaling behavior.

Figure 14 illustrates the performance of our algorithms on a

3-level AMR mesh, with a fixed number of blocks (roughly 24K).

The coarsest level has resolution of 512
3
; at the finest level this

translates into effective resolution of 2048
3
.Components algorithm

is 5-6 times faster than Simple algorithm across all core counts,

although the scaling of both slows down at higher core counts, as

we run out of work. The explanation for Simple algorithm’s poor

performance is that in the multilevel AMR even small components

span larger neighborhoods, because blocks at higher levels of the

AMR hierarchy are smaller in the “absolute” coordinates of the

lower levels. In the experiments of Figure 14, Simple algorithm has

to use two rounds of communication.

Combustion. Figure 15 shows the performance of the Compo-

nents algorithm on a snapshot of a combustion simulation [2],
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AMR data with fixed number of blocks. (Cori, KNL.)

another domain that motivates the restricted problem. (Landge

et al. [14] study combustion simulations, albeit on different data

sets.) Our input data is a 4-level AMR grid, with the resolution of

64
2 × 512 at the coarsest level and 512

2 × 4096 at the finest level.

In the simulation, as the flame is propagating through a premixed

hydrogen-air bath, turbulent mixing processes are beginning to

dominate those due to molecular transport. The local structure of

the flame is distorted in a fundamental way. A signature of these

changes is the overall fuel consumption rate, which is our input

function. Pockets of intense fuel consumption, separated by regions

of total extinction become distorted and mixed more uniformly; the

propagating flame surface is transformed into a distributed burn-

ing region that exhibits an entirely different macroscopic behavior,

putting us in the setting of many connected components above the

threshold of interest.

As Figure 15 shows, theComponents algorithm scales well while

the data is large enough, compared to the number of cores used.

The strong scaling is above 65% going from 256 to 1024 cores and

above 40% going from 256 to 2048 cores. As we increase the core

count to 4096, we run out of work: the overall time is dominated by

communication, rather than computation, and the algorithm stops

scaling.

5 CONCLUSION

Components algorithm, despite its bookkeeping overhead, per-

forms better than Simple algorithm. Moreover, Components algo-

rithm is optimal in its memory consumption because it sends only

the minimum necessary amount of data: sending subtrees only to

those blocks that they are connected to. Components algorithm

processes 8192
3
data set on Cori KNL in roughly 6.5 seconds, using

262,144 cores. It takes Nyx simulation roughly 70 seconds to process

a single time step, using 524,288 cores (with four hyper-threads per

core). This means that it is practical to run our code in situ with

the simulation, processing every time step of the simulation.

We finally reiterate the key assumption of this work: both our

algorithms rely on the restricted graph Gρ having a large number

of relatively small components. If this assumption is not true, then
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Figure 15: Scaling of Components on a snapshot of a
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different thresholds ρ, withfixednumber of blocks. (Cori,
Haswell.)

distant blocks must exchange information, and the advantage of

locality is lost.
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