
Brief Announcement: Towards Lockfree Persistent Homology
Dmitriy Morozov

Lawrence Berkeley National Laboratory

dmorozov@lbl.gov

Arnur Nigmetov

Lawrence Berkeley National Laboratory

anigmetov@lbl.gov

ABSTRACT
Persistent homology, which describes the shape of data by quantify-

ing the sizes of its topological features, is one of the most ubiquitous

algorithms in topological data analysis. All existing algorithms that

compute persistence in parallel rely on the algebraic structure of the

problem to subdivide the computation, either by partitioning the

range, or the domain of the underlying scalar measurement. Instead,

we exploit the inherent parallelism of the reduction algorithm and

rely on hardware synchronization primitives, namely compare-and-

swap operations, to develop a lockfree shared-memory algorithm

that avoids having to decide how to partition the underlying data

set. We demonstrate the algorithm’s performance and scaling using

a set of computational experiments.

ACM Reference Format:
Dmitriy Morozov and Arnur Nigmetov. 2020. Brief Announcement: Towards

Lockfree Persistent Homology. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’20), July 15–17, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.

1145/3350755.3400244

1 INTRODUCTION
Persistent homology is a key method in the field of Topological

Data Analysis. It describes the shape of a data set, such as a high-

dimensional point cloud or a scalar measurement, by quantifying

the distribution of its topological features across scales. The techni-

cal (algebraic topological) details are not needed for this paper, so

we summarize them intuitively. Persistence tracks how topology

of a data set changes, as we vary some natural threshold. For ex-

ample, given a point cloud, we can grow balls around the points

and track at what radii holes (components, loops, voids, and their

higher dimensional analogs) appear and disappear. There exists a

unique pairing between such events, and the entire process can

be summarized as a set of birth–death pairs, called a bar code or a
persistence diagram.

To compute persistence, one captures the topology of the data

in a filtered simplicial complex, which is a generalization of a graph.

A boundary matrix represents the nesting relationship between

different simplices (vertices, edges, triangles, tetrahedra, etc.). All

algorithms for computing persistence manipulate the boundary

matrix. The core of the procedure is a reduction of this matrix,

which follows a special form of Gaussian elimination over a finite

field (typically Z2).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400244

Several methods exist for parallel computation of persistence.

All of them exploit algebraic structure of the problem and broadly

fall into two categories: (1) methods that partition the range of the

underlying scalar measurement and follow the spectral sequence of
the filtration; (2) methods that partition the domain of the under-

lying scalar measurement and follow the Mayer–Vietoris spectral
sequence. Examples of the former approach include PHAT for shared

memory [3] and DIPHA for distributed memory [2]. Examples of

the latter include computation using Mayer–Vietoris blowup com-

plex [10]. HYPHA [13] and Ripser++ [14] accelerate the persistence

reduction by preprocessing the data on a GPU.

In contrast, we explore a different tactic in this paper. Instead

of making decisions about how to partition the data — decisions

that are especially complicated when decomposing the domain

(NP-hard in certain formulations [11]) — we take advantage of the

inherent parallelism of the reduction algorithm itself and rely on the

appropriate synchronization primitives, specifically, compare-and-

swap operations, to develop its lockfree version. A key advantage

of this approach is that our algorithm is a drop-in replacement for

the original reduction algorithm and can be combined with other

optimizations, including their state-of-the-art collection Ripser [1].

2 PERSISTENCE ALGORITHM
We refer the reader to a book by Edelsbrunner and Harer [7] or a

book chapter by Edelsbrunner and Morozov [8] for detailed intro-

duction to the relevant background.

The filtered simplicial complex is represented as a boundary

matrix,D, which is reduced to a matrix R. To perform this reduction

and to extract persistence pairs, for any matrix M , let low(M[j])
denote the row of the lowest non-zero entry in the j-th column. The

function is undefined if the column is zero. Edelsbrunner, Letscher,

and Zomorodian [9] introduced the following greedy Algorithm 1

for computing persistence.

Algorithm 1 Original Persistence Algorithm [9]

1: R := D
2: for j = 0 to n − 1 do
3: while ∃piv < j such that low(R[j]) = low(R[piv]) do
4: R[j] := R[j] + αR[piv]

Hereα = −R[low(j), j]/R[low(piv), piv]. The role of the column

operation is to cancel the lowest non-zero entry in columnR[j], until
it is either unique leftmost such entry, or the column R[j] becomes

0. When the algorithm terminates, the map low is injective: all

lowest non-zero entries of matrix R are in unique rows. We call

matrix R that satisfies this condition reduced. The map low gives a

pairing between simplicies, which lets us determine the persistence

barcode: the i-th simplex creates a “hole” that the j-th simplex kills

if and only if low(R[j]) = i .
Edelsbrunner et al. [5] reinterpret Algorithm 1 as a matrix de-

composition. If we initialize an auxiliary matrix V to be identity,

https://doi.org/10.1145/3350755.3400244
https://doi.org/10.1145/3350755.3400244
https://doi.org/10.1145/3350755.3400244


and perform operations on V in parallel to those on R — we add

V [j] := V [j]+αV [piv] to the inner loop of Algorithm 1— it follows

immediately that the algorithm computes a matrix decomposition,

R = DV , where R is reduced andV is upper-triangular with all ones

on the diagonal (so it is invertible) Edelsbrunner et al. [5] show that

any such decomposition determines the same map low on matrix

R, and therefore provides the same simplex pairing.

Lemma 2.1 (Pairing Uniqeness Lemma [5]). Letting R = DV ,
if R is reduced and V is invertible upper-triangular, then the map
low(R[·]) is unique.

This lemma has an important algorithmic implication: It does

not matter in what order we add the columns of R. As long as all
such operations happen from left to right and matrix R gets reduced,

we get the correct pairing. This is the starting point for our work;

it suggests a tremendous amount of parallelism. We can operate on

multiple columns of R simultaneously. As long as the operations

are atomic and left-to-right, once we get a reduced matrix, we get

the same (correct) answer.

Parallel algorithm. It is conceptually straightforward to imple-

ment this idea. We split matrix R into chunks, create a pool of

threads, and let each thread process the next available chunk, as

in Algorithm 2. The chunking plays a dual role: (1) it helps the

outer parallel loop to scale better (as is a standard technique); (2)

it breaks up the computation into epochs separated by quiescent
states, which is necessary for memory management, an important

detail that we omit from this abridged version of the paper.

Algorithm 2 Outer parallel loop

1: parallel for chunk ∈ [0, #chunks) do
2: compute start, end from chunk
3: reduce_chunk(start, end)
4: mm.Quiescent()

All the real work is done in Algorithm 3. To determine which

column ofmatrixR has the lowest non-zero entry in a particular row,

we use a vector of integers, pivots: pivots[i] = j iff low(R[j]) = i .
Because this vector is modified bymultiple threads at once, wemake

it a vector of atomic integers. The matrix R is stored as a vector
of atomic pointers to columns, which in turn are sorted vectors
of indices of the non-zero entries. Each thread reduces column R[j]
by making its local copy curr_column and working on it. Only

when the thread finishes reducing curr_column is the pointer to
curr_column written to R.

To accommodate the possibility that after we read the pivot

piv := pivots[ℓ] and before we read the pivot column R[piv],
another thread updates R[piv], we must check that low(R[piv]) =
low(curr_column). If this condition fails, we re-read the pivot.

That’s the point of the while-loop in line 6 of Algorithm 3.

Once the pivot is read, there are three possibilities: the pivot

doesn’t exist, it lies to the left of the current column, or it lies to the

right. These correspond to the three conditions of the if-statement.

In the first case, we record the current column as the pivot; in the

second case, we perform an ordinary column reduction; in the third

case, we overwrite the pivot with the current column and switch

to reducing the old pivot column.

Algorithm 3 Chunk reduction with CAS synchronization.

1: function reduce_chunk(start, end)
2: for j := start to end do
3: curr_column := copy of R[j]
4: while curr_column , 0 do
5: ℓ := low(curr_column)
6: do ▷ read pivot

7: piv := pivots[ℓ]
8: piv_column := R[piv]
9: while ℓ , low(piv_column)
10: if piv = −1 then
11: mm.retire(R[j])
12: R[j] := curr_column
13: if CAS(pivots[ℓ], piv, j) then ▷ write pivot

14: break ▷ go to next column

15: else
16: goto 3 ▷ start over with curr_column

17: else if piv < j then
18: curr_column := curr_column + α · piv_column
19: else if piv > j then
20: mm.retire(R[j])
21: R[j] := curr_column
22: if CAS(pivots[ℓ], piv, j) then ▷ write pivot

23: j := piv ▷ reduce next column

24: goto 3

25: if curr_column = 0 then
26: mm.retire(R[j])
27: R[j] := curr_column

We must be careful when updating pivots. Two threads from
different chunks may end up with the same lowest non-zero, and

they may try to record their columns as pivots at the same time. We

use the standard compare-and-swap idiom to solve this problem.

The two if-statements in Algorithm 3 in lines 13, 22 ensure that in

such a situation only one thread writes to pivots atomically, and

the other threads will be notified via a failed CAS that they must

start over the reduction of the current column.

We omit the discussion of correctness for lack of space, but note

that there cannot be any conflict in updating the columns of matrix

R: only one thread can be working on reducing a particular column

R[j], and therefore only one thread will try to record this column.

The columns interact with each other through the pivots vector,
and so the change of the column R becomes visible to the other

columns during the CAS operation that follows the assignment. In

between, once the column R[j] is updated, but not its pivot, the
column is inconsistent — pivots[low(R[j])] , j — and any thread

that tries to read it will fail in the do-while-loop in line 6.

Each CAS operation (for fixed piv, ℓ, j) can fail at most n− j times,

since every failure means the pivot is moved to the left by another

thread. It follows that Algorithm 3 is waitfree. It is not difficult to

check that the matrix R ends up being reduced, when the algorithm

terminates, even though the columns are processed out of order.

Because column operations are still performed from left to right,

Lemma 2.1 implies that we get the correct pairing, given by the

function low(R[·]).



1 5 10 15 20 25 30

1

4

8

12

Number of threads

S
p
e
e
d
u
p

Comparison to PHAT

Ours

PHAT

Figure 1: Speedup for varying number of threads on the
upper-star filtration of a density field from a cosmological
simulation.

3 EXPERIMENTAL RESULTS
We ran our experiments on a dual socket machine with 40 Intel

Xeon Gold 6230 cores (20 cores in each socket), and 128 GB of

RAM. All timings are averaged over 5 runs. We measure only the

reduction time, without I/O and initialization.

We compare our algorithm with the chunk reduction algorithm

implemented in PHAT [3], which combines two optimizations, clear-

ing [4] and compression [9]. We have integrated the clearing op-

timization in our implementation as well. Figure 1 illustrates the

speedup relative to the time it takes our code using a single thread

to compute persistence of the density function on a snapshot of

a cosmological simulation. (The data is 128
3
, and its upper-star

filtration contains 53.5 million simplices.)

We have also incorporated our algorithm into Ripser [1], a state-

of-the-art software to compute persistence of Vietoris–Rips com-

plexes. It incorporates a large number of optimizations as well as

ideas about computing persistent cohomology, while maintaining

the matrix V instead of the matrix R [1, 6]. Figure 2 illustrates the

speedup relative to the single-threaded version of our code. Note

that this is typically a little slower than unmodified Ripser (illus-

trated in the figure with the points on the dashed line) because of

the extra overhead from using atomic operations. The figure shows

multiple datasets, explained in the original Ripser paper [1] and by

Otter et al. [12]. The homological dimension used for each data set

is specified in the legend.

4 CONCLUSION
We introduced a non-blocking algorithm for computing persistent

homology, which exploits the inherent parallelism of the problem.

Its main subroutine is waitfree, but not its outer loop. A key open

question is how to make the entire algorithm waitfree.

1 5 10 15 20 25 32

1

3

5

7

O
r
i
g
i
n
a
l
R
i
p
s
e
r

Number of threads

S
p
e
e
d
u
p

Ripser speedup

o3 (4096), p = 3

celegans, p = 3

HIV, p = 2

dragon, p = 2

sphere3, p = 3

Figure 2: Speedup for varying number of threads on the
Vietoris–Rips complexes of different data sets, processed us-
ing original and parallel versions of Ripser.

ACKNOWLEDGEMENTS
This work was supported by the Director, Office of Science, Office

of Advanced Scientific Computing Research, of the U.S. Department

of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES
[1] U. Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes,

August 2019. arXiv:1908.02518.

[2] U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of persistent

homology. In 2014 proceedings of the sixteenth workshop on algorithm engineering
and experiments (ALENEX), pages 31–38. SIAM, 2014.

[3] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Phat–persistent homology

algorithms toolbox. Journal of symbolic computation, 78:76–90, 2017.
[4] C. Chen and M. Kerber. Persistent homology computation with a twist. In

Proceedings 27th European Workshop on Computational Geometry, volume 11,

pages 197–200, 2011.

[5] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by

updating persistence in linear time. In Proceedings of the Twenty-second Annual
Symposium on Computational Geometry, SCG ’06, pages 119–126, New York, NY,

USA, 2006. ACM.

[6] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Dualities in persistent

(co)homology. Inverse problems, 27(12):124003, November 2011.

[7] H. Edelsbrunner and J. Harer. Computational topology: an introduction. American

Mathematical Soc., 2010.

[8] H. Edelsbrunner and D. Morozov. Persistent homology. In Jacob E Goodman,

Joseph O’Rourke, and Csaba D Tóth, editors, Handbook of Discrete and Computa-
tional Geometry. CRC Press, 2017.

[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and

simplification. Discrete & computational geometry, 28(4):511–533, November 2002.

[10] R. Lewis and D. Morozov. Parallel computation of persistent homology using

the blowup complex. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures, pages 323–331, New York, NY, USA, 2015. ACM.

[11] R. Lewis and A. Zomorodian. Multicore homology via mayer vietoris, July 2014.

arXiv:1407.2275.

[12] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington. A roadmap

for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.
[13] S. Zhang, M. Xiao, C. Guo, L. Geng, H. Wang, and X. Zhang. Hypha: a framework

based on separation of parallelisms to accelerate persistent homology matrix

reduction. In Proceedings of the ACM International Conference on Supercomputing,
pages 69–81, 2019.

[14] S. Zhang, M. Xiao, and H. Wang. GPU-Accelerated computation of Vietoris-Rips

persistence barcodes. March 2020.


	Abstract
	1 Introduction
	2 Persistence Algorithm
	3 Experimental results
	4 Conclusion
	References

