
Parallel Computation of Persistent Homology
using the Blowup Complex

Ryan Lewis
Stanford University

Stanford, CA
me@ryanlewis.net

Dmitriy Morozov
Lawrence Berkeley National Laboratory

Berkeley, CA
dmitriy@mrzv.org

ABSTRACT
We describe a parallel algorithm that computes persistent
homology, an algebraic descriptor of a filtered topological
space. Our algorithm is distinguished by operating on a
spatial decomposition of the domain, as opposed to a decom-
position with respect to the filtration. We rely on a classical
construction, called the Mayer–Vietoris blowup complex, to
glue global topological information about a space from its dis-
joint subsets. We introduce an efficient algorithm to perform
this gluing operation, which may be of independent interest,
and describe how to process the domain hierarchically. We
report on a set of experiments that help assess the strengths
and identify the limitations of our method.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Parallelism and concurrency ; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumeri-
cal Algorithms and Problems

Keywords
persistent homology; Mayer–Vietoris blowup complex

1. INTRODUCTION
Persistent homology was introduced fifteen years ago by

Edelsbrunner, Letscher, and Zomorodian [1] and later placed
on a firm algebraic footing by Carlsson and Zomorodian [2].
From its roots as a method to measure shape across scales, it
has evolved into a rich mathematical theory with applications
to clustering [3] and dimensionality reduction [4], to materials
science [5] and cosmology [6], to integral geometry [7] and
image analysis [8], to name just a few. We refer the reader
to the several excellent surveys [9, 10, 11, 12, 13] for a more
detailed look at what makes persistence so exciting both to
mathematicians and practitioners.

Without losing too much generality, we can think of persis-
tence as operating on scalar functions, f : X → R. It tracks

Publication rights licensed to ACM. ACM acknowledges that this contribution was au-
thored or co-authored by an employee, contractor or affiliate of the United States gov-
ernment. As such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3588-1/15/06 $15.00
DOI: http://dx.doi.org/10.1145/2755573.2755587

evolution of homology classes (an algebraic formalization of
“holes”) in the sublevel sets, f−1(−∞, a], of these functions
for varying values of threshold a. Specifically, it pairs those
values of a where new homology classes appear and where
they die. Such birth–death information is valuable for in-
ference (e.g., when the domain X is high-dimensional and
cannot be seen directly) and as a statistical descriptor of the
function that can be used, for example, to compare different
measurements of a physical phenomenon.

One ingredient in the success of persistent homology has
been the development of efficient algorithms for its com-
putation. The original paper [1] introduced a cubic-time
algorithm that computes persistence by reducing a boundary
matrix via a constrained Gaussian elimination. A different,
output-sensitive analysis in the same paper hints at why
the algorithm performs so much more efficiently in practice
than the worst-case analysis would suggest. Since then an
algorithm for computing persistence in matrix multiplication
time has appeared [14], with a matching lower bound [15].
Other notable theoretical results include an output-sensitive
algorithm that computes persistence in a top-down man-
ner [16], the connection between different variations of the
original algorithm and algebraic dualities [17], including an
algorithm to compute persistent cohomology [4] and a data
structure that improves its performance [18].

Another important direction in understanding computa-
tional aspects of persistence is the work on various opti-
mizations of the algorithms. Already the original paper [1]
observed that one can get rid of the so-called negative sim-
plices during the computation. Another notable result is the
clearing optimization [19], which zeroes out entire columns
of the matrix without processing them. It’s also possible to
combine the two optimizations together [20], although doing
so requires a different algorithm.

Despite significant successes, there is still a large gap
between the sizes of data sets that persistent homology algo-
rithms can process and what’s needed in practice. One way
to close this gap is to develop parallel algorithms and take
advantage of the modern massively parallel computers. But
any such attempt faces a fundamental difficulty: topology
tracks global information, while parallel computation thrives
on locality. In this paper we explore one approach to com-
puting persistent homology in parallel. It’s distinguished by
dividing the work with respect to a spatial decomposition
of the domain of the function, a feature important, for ex-
ample, for integrating with existing decompositions used in
simulation codes.

Related work. Ours is not the first attempt to design a
parallel algorithm for persistent homology. Broadly, such
algorithms can be split into two categories based on how
they partition the computation between processors. Algo-
rithms in the first category divide the data by function value,
grouping ranges of function values together. Edelsbrunner
and Harer [28] introduced the “spectral sequence algorithm,”
which divides the input matrix into blocks and processes
them along diagonals. The algorithm is naturally parallel:
blocks within a diagonal can be processed independently.
Bauer, Kerber, and Reininghaus [20, 21] have examined the
practical aspects of this algorithm. Notably they found clever
ways to combine seemingly incompatible optimizations and
implemented the algorithm, both in shared and distributed
memory.

Another way to parallelize persistence, when dividing the
data by function value, is using zigzag persistent homol-
ogy [22]. The approach, suggested at the end of that paper,
has not yet been tried in practice, as far as we know.

The second way to break up the computation between pro-
cessors is to partition the domain of the function, assigning
different regions to different processors. Although the ap-
proach sounds simple — it is probably the most common way
to divide data for independent processing — for persistence
such a partition presents a distinct challenge. Homology
captures global properties of a topological space; persistent
homology does so for a large collection of topological spaces
at once. Gluing information from different subsets of the do-
main requires resolving certain algebraic issues. Translating
any such resolution into a practical algorithm is a challenge
of its own.

Although formulated in a different language (of spectral
sequences), the work of Lipsky et al. [23] is close to ours, at
least in spirit. They describe an algebraic construction that
prescribes how to combine information from different subsets
of the domain into a coherent whole. There are two problems
with that paper. First, there is a serious technical error1,
which the authors are aware of and have a possible correction
(according to a personal communication). The second
problem is that, even if we restrict attention to ordinary
homology (where the mentioned algebraic problem does not
exist), the algorithm is not sufficiently detailed. It does not
actually consider which information is available locally to
any given processor, or what exactly is required to compute a
particular algebraic object in parallel. There are also subtler
differences between our approaches (for example, Lipsky et
al. propose to collect information in the order of increasing
dimension of the nerve, whereas we pursue a hierarchical
decomposition of the domain), but they are less important.
In this paper, we replace the algebraic construction with a
geometric construction of Mayer–Vietoris blowup complex,
which contains the same information, but is much more
transparent computationally.

Mayer–Vietoris blowup complex was introduced to the com-
putational topology community by Zomorodian and Carls-
son [24], who used it to compute, what they called, localized

1Briefly, the paper assumes that given a map between two
persistent homology modules, the target module decomposes
as the direct sum of the image module and the cokernel
module, which is not the case. Recovering the former decom-
position from the latter requires a certain amount of “repair.”
In effect, Sections 3 and 4 of our paper are dedicated to
performing such a repair efficiently.

homology. Although there is some overlap between the key-
words of our papers, the details diverge significantly. They
use persistent homology as a tool to localize homology classes
to the individual sets of the cover. (And, accordingly, take a
filtration with respect to the second factor of the blowup.)
We are concerned with using the blowup complex as a tool
to compute persistent homology of the base space. (And,
therefore, filter by the first factor.)

Lewis and Zomorodian [25] use the Mayer–Vietoris blowup
complex to compute ordinary homology in parallel, in shared
memory. The basic ideas overlap between our papers, but
persistent homology imposes more constraints on the opera-
tions one may perform during the matrix reduction. In the
context of [25], Sections 3 and 4 of our paper can be seen as a
way to adapt their results to persistent homology. Our work
also finds more parallelism (afforded by the row operations)
than exploited by Lewis and Zomorodian. As such it can
be seen as an improved way to compute ordinary homology
(over a field), which comes out as a byproduct of persistent
homology. Also notably, Lewis and Zomorodian consider the
complexity of cover construction, an important question that
we ignore entirely in this paper.

To conclude our review of related work, we also note
the work on distributed computation and representation of
merge trees [26]. Merge trees can be used to recover 0-
dimensional persistent homology, which is a very special case
computationally (with different complexity characteristics
than the general case). In the present paper, we are interested
in the general problem in all dimensions.

Contributions. Our contributions are three-fold:

• we present the first parallel algorithm that computes
persistent homology from a spatial decomposition of
the domain;

• we present an efficient procedure, Cascade in Sec-
tion 4, that combines persistence pairs from different
subspaces of the domain into persistence pairs for the
entire domain; that algorithm operates on matrices
with a particular structure and may be of independent
interest in other contexts;

• we present experiments and describe practical limita-
tions of our results.

2. BACKGROUND
We briefly review the necessary background, but encourage

the reader to consult a textbook on algebraic topology (e.g.,
by Hatcher [29]) or on computational topology (e.g., by
Edelsbrunner and Harer [28]) for a thorough introduction to
the subject.

Homology. Given a universal vertex set V , an (abstract)
simplex is a subset of V , σ ⊆ V . The dimension of a simplex
is one less than its cardinality, dimσ = cardσ − 1. A subset
of a simplex is called its face. A simplicial complex K is a
collection of simplices closed under the face relation, i.e., if
σ ∈ K and τ ⊆ σ, then τ ∈ K.

In applications, simplicial complexes often arise from ge-
ometric constructions. For example, given a point set P
with a metric d : P × P → R, one can build a Vietoris–Rips
complex for a parameter r by recording every subset σ ⊆ P ,

with d(x, y) ≤ r ∀x, y ∈ σ. It’s easy to verify that this
construction is closed under the face relation.

A k-chain is a formal sum of k-dimensional simplices,
c =

∑
aiσi. Throughout the paper, for ease of exposition,

we assume the coefficients ai are elements of the field Z/2Z,
so a chain can be thought of as a set of simplices. The
k-chains form an abelian group under addition, which we
denote by Ck. The boundary map ∂k takes a k-simplex σ into
the sum of its (k − 1)-dimensional faces. It extends linearly
to the chain groups Ck, giving an operator ∂k : Ck → Ck−1.

The kernel of this operator, Zk = ker ∂k, is called the
cycle group; by definition, it consists of all the chains with an
empty boundary. The image of the operator, Bk = im ∂k+1, is
called the boundary group. A homology group is the quotient,
Hk = Zk/Bk; it’s the group of non-bounding cycles. It is
convenient to suppress the dimensions by taking the direct
sum of chain groups across all dimensions, C(K) = ⊕Ck(K),
with ∂ : C(K)→ C(K), and H(K) = ker ∂/ im ∂.

Persistent homology. A nested sequence of simplicial
complexes, K0 ⊆ K1 ⊆ . . . ⊆ Kn = K, is called a filtration
of K. Passing to homology, we get a sequence of homology
groups (one for each complex in the filtration), connected by
linear maps induced by the inclusions.

H(K0)→ . . .→ H(Ki)→ . . .→ H(Kn) (1)

We denote the maps induced by inclusions of the simplicial
complexes by f ji : H(Ki) → H(Kj). Persistent homology
tracks how elements appear and disappear in this sequence.
We say that an element α ∈ H(Ki) is born in H(Ki) if it’s
not in the image of the map f ii−1. We say that α dies at

H(Kj) if f ji (α) ∈ im f ji−1, but f j−1
i (α) /∈ im f j−1

i−1 . If there is
an element α born in H(Ki) that dies in H(Kj), we record
this as a pair (i, j). The goal of algorithms for computing
persistent homology is to compute all such pairs (i, j) for a
given filtration.

The following theorem characterizes when two sequences
of homology groups produce the same persistence pairing.

Persistence Equivalence Theorem [28]. Given two
filtrations L0 ⊆ . . . ⊆ Ln and K0 ⊆ . . . ⊆ Kn, the induced
sequences of homology groups produce the same persistence
pairs, if there are isomorphisms H(Li) → H(Ki) that com-
mute with inclusions. In other words, if the vertical maps in
the following diagrams are isomorphisms, and the diagram
commutes.

H(K1) . . . H(Ki) . . . H(Kn)

H(L1) . . . H(Li) . . . H(Ln)

// // // //

//

OO

// //

OO

//

OO

Algorithms. Assume that we are given a filtration K0 ⊆
. . . ⊆ Ki ⊆ . . . ⊆ Kn = K, where Ki+1 = Ki ∪ σi+1. We
represent the boundary map, ∂ : C(K)→ C(K), as a matrix
D, where D[i, j] = 1 if (k − 1)-simplex σi is a face of k-
simplex σj ; D[i, j] = 0 otherwise. Notice that given such a
representation, every upper-left square sub-matrix of D, sub-
matrix consisting of rows and columns [0 . . . i], represents the
boundary map of the subcomplex Ki, ∂i : C(Ki)→ C(Ki).

Given such a matrix, we can compute the persistence pair-
ing in the sequence of homology groups (1) using algorithm

ELZ(D), Algorithm 1, introduced by Edelsbrunner et al. [1].
Let “lowR[·, i]” denote the lowest non-zero entry in the col-
umn R[·, i] (the map is undefined if the column is zero). We
say that the matrix R is reduced if the lowest non-zero entry
in every column falls in a unique row; in other words, if the
map low is injective. The original algorithm [1] computes
only the matrix R by greedily subtracting columns from left
to right until no two columns have the lowest non-zero entry
in the same row. When this happens, the lowest non-zero
entries of the reduced matrix R record the sought after per-
sistence pairing, i.e., we have a pair (i, j) in the sequence
H(K0)→ . . .→ H(Kn) if and only if lowR[·, j] = i.

An additional matrix U was introduced in a later work [27],
which reinterpreted persistence computation as finding a
decomposition D = RU , where the matrix R is reduced and
the matrix U is invertible upper triangular. The crucial
insight of that paper was that for any such decomposition,
we get the same lowest non-zero entries in the columns of R
(i.e., the same map lowR). In particular, this means that
one can subtract columns of R in any order, as long as such
operations always happen from left to right. If in the end
the matrix R is reduced, then we recover the correct pairing.
We denote by rD(i, j) the following inclusion-exclusion of
ranks of lower-left sub-matrices of D,

rD(i, j) = rkDj
i − rkDj

i+1 + rkDj−1
i+1 − rkDj−1

i ,

where rkDj
i denotes the rank of the lower-left sub-matrix of

D, namely the sub-matrix that retains rows [i..n] in columns
[0..j].

Lemma 1 (Pairing Uniqueness Lemma [27]). Letting
D = RU , we have lowR[·, j] = i iff rD(i, j) = 1. In particu-
lar, the pairing function does not depend on the matrix R in
the RU-decomposition.

We do not repeat the proof of the lemma here, but briefly
recall that it depends on the fact that if R is reduced then
lowR[·, j] = i iff rR(i, j) = 1. Then it’s easy to see that
left-to-right column operations will not change the ranks of
lower-left sub-matrices and, therefore, rR(i, j) = rD(i, j).

For the present work, we need to extend this lemma to
allow row operations on the matrix R.

Lemma 2. Letting D = SRU , where S and U are invert-
ible upper-triangular and R is reduced, we have lowR[·, j] = i
iff rD(i, j) = 1.

The proof is the same as before. Neither the left-to-right col-
umn operations, expressed by the matrix U , nor the bottom-
up row operations, expressed by matrix S, change the ranks
of lower-left sub-matrices. Therefore, rR(i, j) = rD(i, j).

As an immediate consequence of the amended lemma, we
can choose the matrix S to be such that we get a decompo-
sition D = SPU , where P is not only reduced, but it has
at most one non-zero entry per column. To achieve this,
we first perform the reduction prescribed by the ELZ(D)
algorithm to get the decomposition D = RU . Then we go
through the rows of the matrix R from the bottom up and,
whenever we encounter a (unique, by induction) non-zero in
a row, we subtract it from the rest of the entries in its column.
This operation is formalized in the algorithm Sparsify(R),
Algorithm 2. For clarity, we prove its correctness.

Proof (Correctness of Algorithm 2). We want to
show by induction that after the outer loop processes row

Algorithm 1 Persistence reduction algorithm.

ELZ(D):

R = D, U = I
for all columns R[·, i] do

while R[·, i] 6= 0 and ∃ j < i with lowR[·, i] = lowR[·, j] do
R[·, i] = R[·, i]−R[·, j]
U [j, i] = 1

Algorithm 2 Column sparsification algorithm.

Sparsify(R):

P = R, S = I
for all rows P [i, ·] of P from bottom up do

if P [i, j] is not zero then
for all non-zero entries P [i′, j] in P [·, j], with i′ 6= i do

P [i′, ·] = P [i′, ·]− P [i, ·] # zero out the entry P [i′, j]
S[·, i] = S[·, i] + S[·, i′]

i, the columns with the lowest non-zero entries in rows i
and below have a unique non-zero entry, and the matrix P
remains reduced. The base case is trivially true: either the
lowest row of the matrix P is zero, or it has a unique non-
zero entry since the input matrix R is reduced. Suppose the
statement is true after the outer loop completes processing
row i+ 1. When processing row i, either the row is empty,
and we are done, or again it has a unique non-zero entry.
Why? Suppose there is more than one non-zero entry in the
row. Then either all of them are the lowest entries in their
columns, which would violate the assumption that the matrix
P is reduced, or some of them have lower entries in their
columns, which would violate the inductive hypothesis. Since
the non-zero entry P [i, j] is unique, after the inner loop of
the algorithm, the column above it is zero, matrix P remains
reduced, and the statement is true for all the rows up to i.
By induction, at termination, the algorithm produces matrix
P that is reduced and each of whose columns has at most
one non-zero entry.

Blowup complex. We recall a classical construction used
for gluing topological information from multiple disjoint sub-
sets of a space. Its features relevant to our work are explained
perspicuously by Zomorodian and Carlsson [24]; the original
description of the structure was given by Segal [30]. Given
a cover C = {Ki}i∈I of a complex K by simplicial subcom-
plexes Ki ⊆ K, we denote the intersection of subcomplexes
indexed by J ⊆ I by KJ = ∩j∈JKj .

Definition 3. The Mayer–Vietoris blowup complex of
simplicial complex K and cover C, KC ⊆ K× I, is defined by

KC =
⋃
J⊆I

⋃
σ∈KJ

σ × J.

Figure 1 illustrates a simplicial complex, covered by three
subcomplexes, and the resulting blowup complex.

Chain complex of the blowup. A basis for the chain
complex may be prescribed via tensor products C∗(K

C) =
〈σ × J | σ × J ∈ KC〉 [24, Section 4.3]. The tensor prod-
uct structure endows the boundary operator of the blowup
complex with a useful structure. The boundary of a cell
σ × J ∈ KC is given by [24, Lemma 4],

∂(σ ⊗ J) = ∂σ ⊗ J + (−1)dimσσ ⊗ ∂J. (2)

Figure 1: Left: Simplicial complex K. The subcom-
plexes of the cover are highlighted with three shaded
regions. Right: The resulting blowup complex KC,
with the disjoint subcomplexes of the cover shown
in red, green, and blue.

With a boundary operator defined we may now consider the
homology of the blowup complex H(KC). Let π : KC → K
denote the projection of the blowup complex onto the first
factor. This map is a homotopy equivalence [24]. We do
not define this technical term, but note that it implies that
the map π∗ : H(KC) → H(K), induced on homology, is an
isomorphism.

In moving to persistent homology, we need only specify a
partial order on the KC. Given a subcomplex L ⊆ K, its
blowup complex (where the cover is the restriction of the
original cover, Li = Ki ∩ L),

LC =
⋃
J⊆I

⋃
σ∈(KJ∩L)

σ × J,

is a subcomplex of the blowup complex of KC , LC ⊆ KC . The
projection map, πL : LC → L, is also a homotopy equivalence,
so the map π∗L : H(LC)→ H(L), induced on homology groups,
is an isomorphism. We arrive at the main reason for using
the Mayer–Vietoris blowup complex.

Theorem 4. A filtration K1 ⊆ . . . ⊆ Ki ⊆ . . . ⊆ K of the
base complex K induces a filtration KC1 ⊆ . . . ⊆ KCi ⊆ . . . ⊆
KC of the blowup complex. Passing to homology, we get two

D0

D1

D2

KC
>0

. . .

Q0

Q1

Q2

...

Figure 2: Schematic structure of the boundary ma-
trix of the blowup complex. Only shaded regions
may be non-zero.

sequences of homology groups connected by isomorphisms,

H(K1) . . . H(Ki) . . . H(Kn)

H(KC1) . . . H(KCi) . . . H(KCn)

// // // //

//

OO

π∗
1

// //

OO

π∗
i

//

OO

π∗
n

The persistence pairs in the two sequences are the same.

Proof. The vertical maps are isomorphisms. The projec-
tions πi commute with the inclusions, so the entire diagram
commutes. Persistence Equivalence Theorem implies that
the persistence pairs in the top and bottom sequences are
the same.

In other words, we can compute the persistence pairing of
the filtration of K from the filtration of KC .

We end this section by noting that in the filtration of KC ,
the complex is not constructed one cell at a time, i.e., the
difference between KCi+1 and KCi may consist of multiple cells.
Within an algorithm we may break these ties in the partial
order arbitrarily, as long as we respect the dimension of the
cells. So we order the cells in KCi+1 −KCi by the dimension
of their second factor.

3. ALGORITHM
It is helpful to understand the special structure of the

boundary map (2) in the blowup complex. Over Z/2Z coeffi-
cients, the boundary of a cell σ × J ∈ KC becomes

∂(σ ⊗ J) = ∂σ ⊗ J + σ ⊗ ∂J.

Let the matrixDC represent this boundary map, with columns
and rows ordered to respect the given filtration of KC. In
other words, if we were to reduce DC using the ELZ(DC)
algorithm, we would get the correct persistence pairing.

Suppose we reorder the columns and the rows of DC as
follows. We group together the rows and the columns σ ×
{i} that belong to the individual disjoint sets of the cover
(ordering them by filtration within these sets), and we group
together columns that correspond to the cells σ × J , where

KC
>0

. . .
...

P 0

P 1

P 2

S0Q0

S1Q1

S2Q2

Figure 3: The matrix T ′, formed out of the bound-
ary matrix of the blowup complex after the initial
column and row reductions.

the second factor J has dimension higher than 0, again
ordering by filtration within those columns. Figure 2 shows
this structure schematically: D0,D1,D2 denote the sub-
matrices of the disjoint sets, i.e., the columns of Di record
the boundaries of the cells σ × {i}, where σ ∈ Ki. The
right-most block of shaded columns represents the cells with
higher-dimensional second factor, i.e., the cells σ × J , where
dimJ > 0. We denote by Qi their sub-blocks that fall into
the rows σ × {i} that correspond to the cells of the disjoint
union. Notice that outside the shaded regions in Figure 2,
the matrix is necessarily zero.

We observe that because we’ve ordered the cells within the
blocks by filtration, we may carry out operations within the
blocks — column operations from left to right, row operations
from bottom up — without violating the column and row
order within the original matrix DC .

Accordingly, we may column-reduce individual matrix
blocks independently, decomposingDi = RiU i using ELZ(Di)
algorithm. We may further row-reduce matrices Ri, getting
decomposition Di = SiP iU i using Sparsify(Ri) algorithm.
(The matrix P i has an immediate interpretation: it records
the persistence pairs in the restriction of the input filtration
to the cover set Ki.) To be consistent in the full boundary
matrix DC , we must perform the row operations on the full
rows, thus replacing blocks Qi with blocks SiQi. We call the
resulting matrix T ′, see Figure 3.

It is helpful to note the structure of the blocks Qi. Which
blowup cells have the base cells of the disjoint union, σ×{i},
in their boundary? First of all, these are the cells τ×{i}, with
σ ∈ ∂τ ; the first factor of their boundary map (2) consists
of the cells σ × {i}. Their boundaries define the columns
of the sub-matrices Di. The second type of a cell that has
σ × {i} in its boundary are the cells σ × {i, j}, where cover
set Kj intersects cover set Ki. The part of the row of cell
σ×{i} that falls into the block Qi has non-zero entries in the
columns of such cells. These are the only two possibilities
allowed by the boundary formula (2). Most rows of matrices
Qi are zero, since only cells that fall into more than one cover
set have non-zero entries in the columns of Qi.

Now, if we reorder the columns and the rows of the matrix
T ′ back into the original filtration order, call the resulting

matrix T , and reduce it using algorithm ELZ(T), the low
map on the resulting matrix RT will produce the correct
persistence pairing.

Theorem 5. (i, j) is a pair in H(KC0)→ . . .→ H(KCn) if
and only if lowRT [j] = i.

Proof. We pad and reorder the rows and columns of
matrices Si and U i so that they match the original blowup
boundary matrix DC. (The padding is to identity, i.e., the
newly added rows and columns have 1s on the diagonal,
so the padded matrices remain invertible upper-triangular.)
Since the operations in matrices Di respected the filtration
order, the padded matrices Si and U i remain invertible upper-
triangular. Therefore, so are their products S = S0 · S1 · . . .
and U = U0 · U1 · . . . Therefore, the first set of independent
reductions results in the decomposition DC = STU , with
T appropriately reordered. Now reducing the matrix T
using ELZ(T) algorithm produces decomposition T = RTUT ,
where RT is reduced and UT is invertible upper-triangular.
Therefore, the complete decomposition is DC = SRT (UTU),
and Lemma 2 implies the claim.

Parallel setup. If we have p cover sets, i.e., p = card I, then
we can split the initial operations ELZ(Di) and Sparsify(Ri)
between p processors. The final reduction ELZ(T) can be
performed by either one of them. If all the processors share
the same memory, we may be satisfied with this solution,
although we can perform a little more work in parallel, as
explained in Section 5.

If the memory is distributed, the separate bits of informa-
tion P i and SiQi, necessary for the final reduction, need to
be brought to a single processor. In Section 5 we explain how
this operation can be performed using a binary reduction.
Meanwhile, we mention a simple, but important optimiza-
tion: it suffices to send only those rows of P i that are not
zero in SiQi; the rows that are zero in SiQi record the pairs
that will not change.

4. CASCADE
So far it is unclear why we performed the seemingly un-

necessary sparsification step, converting matrices Ri into
matrices P i. The sparsification is advantageous since it re-
duces the potentially quadratic size of matrices Ri down to
the linear size of matrices P i. In the distributed setting,
this means less data to send to the processor responsible for
the final reduction. But there is another advantage. The
combined matrix T has a special sparsity pattern. This struc-
ture allows for a faster reduction even using the standard
ELZ(T) algorithm. In addition, with a little extra work,
presented in algorithm Cascade(T), Algorithm 3, we can
preserve this structure throughout the computation and thus
gain efficiency both in time and in space.

Suppose there are n =
∑
i∈I cardKi cells in the blowup

complex that fall into the disjoint union, and there are m
cells with higher-dimensional second factor, m = card{σ×J |
σ × J ∈ KC , dim J > 0}. We assume m < n. Then reducing
the matrix T using ELZ(T) algorithm takes, in the worst
case, O

(
n2m

)
time and O

(
n2
)

space. (The reason why

the time complexity is tighter than O
(
n3
)

is similar to the
analysis in the proof of Theorem 7 below.)

The matrix T has special structure, see Figure 4. The
n columns of the disjoint union are formed by matrices P i,

Figure 4: Structure of the matrix T prior to the
reduction. Shaded columns are dense. The rest of
the columns are ultra-sparse, they have at most one
non-zero entry.

which have at most one non-zero entry per column. We call
such columns ultra-sparse. The remaining m columns are
dense. Given such a matrix, with n ultra-sparse columns and
m dense columns, we can reduce it as follows.

We iterate over the rows of the matrix T from the bottom
up, and consider the columns whose lowest ones fall into
a given row. Let J be the set of their indices. At most
one such column can be ultra-sparse because the matrices
P i are reduced. Let j denote the first column in the set J .
We can subtract it from every other column in J . If one of
those columns is ultra-sparse and column j is dense, then the
ultra-sparse column becomes dense. To keep the number of
dense columns constant, we subtract the current row (which
after the column operations has a single non-zero in column
j) from every other row with a non-zero entry in column j.
In other words, we zero out column j, making it ultra-sparse.
Algorithm 3 performs the described operations.

Since Cascade(T) performs operations from left to right
and from bottom up, Lemma 2 immediately implies its cor-
rectness.

Theorem 6. Lowest ones of the matrix T reduced using
Cascade(T) algorithm produce the correct pairing of the
sequence of homology groups, H(KC0)→ . . .H(KCn).

What is the worst case complexity of Cascade(T)?

Theorem 7. Cascade(T) algorithm reduces the matrix
T with n ultra-sparse and m dense columns in time O

(
n2m

)
,

while keeping its size O (nm).

Proof. The initial number of nonzero elements in the
matrix T is in O ((n+m)m+ n) = O (nm). Since the num-
ber of dense columns is kept constant (or, more accurately,
it never increases) thanks to the row operations that clear
out column j, the space used during the cascade remains in
O (nm).

It takes O (n+m) time to add two dense columns, or
to add a dense column to a sparse column. How many
such operations are there? At most m per row. There
are n + m rows, for a total of O

(
(n+m)2m

)
= O

(
n2m

)
operations.

Algorithm 3 Cascade algorithm for the reduction of the matrix T with ultra-sparse columns.

Cascade(T) :

for all rows T [i, ·], from bottom up do
J = columns with the lowest non-zero entry in row T [i, ·]
j = min J
for all j′ ∈ J, j′ > j do

subtract T [·, j] from T [·, j′]
for all i′ < i with T [i, j] 6= 0 do

subtract T [i, ·] from T [i′, ·] # zero out all but the lowest entry of column T [·, j]

5. HIERARCHY
So far we have considered the case of a single cover of the

domain, a collection of simplicial complexes C = {Ki}I with
domain K =

⋃
C. But in many applications, it is natural to

build a hierarchy of such covers. For example, if the domain
K triangulates a cube or a flat torus (a cube with periodic
boundary conditions), both exceedingly common scenarios
for simulation data, one can build a refinement of covers
following an oct-tree partition of the cube. The cubes at
each level of the oct-tree become the cover sets. (Technically,
the cover sets are the closures of the subcomplexes of K that
intersect those cubes.)

Given such a hierarchy, it becomes possible to follow the
standard reduction pattern and merge sets together in pairs
(or, more generally, in small groups) and thus to extend the
amount of useful work a processor can do. It also limits how
many dense columns m a single processor has to handle at
once. Consider the prototypical oct-tree example. If we have
p = 8k processors and descend down to the k-th level in
the tree, we end up with p cubes and m = 3 · 2k · c shared
simplices, where c is the number of simplices in a side of the
cube. On the other hand, if we merge the cubes in pairs
(proceeding to a higher level in the oct-tree after each merge),
m never exceeds c, the size of the initial cut that splits the
domain into two.

We can abstract the hierarchical partition of an oct-tree
as a nested collection of covers C0, C1, . . ., such that K =⋃
C0 =

⋃
C1 = . . . and every cover set Li ∈ Ca is contained

in exactly one cover set Kj ∈ Ca−1, Li ⊆ Kj .
Consider the structure of the boundary matrix for two

consecutive levels in the cover, illustrated in Figure 5. Sup-
pose at level i + 1 the cover consists of four sets, Ci+1 =
{K1,K2,K3,K4}, and at level i the cover consists of two
sets Ci = {K1 ∪K2,K3 ∪K4}. The procedure outlined in
Sections 3 and 4 would operate independently on the matri-
ces D1,D2,D3, and D4 (on four different processors). The
first two results would then be combined by first performing
row updates on the matrices Q1 and Q2, then reordering
the matrix and reducing it using the Cascade algorithm.
The second pair of results would be combined similarly. The
two combined matrices contain the same information as the
reduced boundary matrices R12 and R34 for the cover sets
K1 ∪K2 and K3 ∪K4 at level i. We could proceed with the
algorithm at level i, with one caveat: the higher rows (the
second to last column in the figure) involved in the combina-
tion did not get updated during the execution of Sparsify
and Cascade algorithms. The fix is straight-forward: when
processing any given level of the cover, we perform the row
operations on the full rows, rather than on their restriction to
the given level. The only information necessary to construct

︷ ︸︸ ︷ ︷ ︸︸ ︷
︷ ︸︸ ︷

i+ 1 i+ 1

i

D1

D2

Q1

Q2

D3

D4

Q3

Q4

Figure 5: The structure of the boundary matrix for
three consecutive levels of the hierarchy.

such rows is knowing which sets of the cover contain any
given simplex.

6. EXPERIMENTS
We have implemented the described algorithm on top of

MPI, and ran a strong scaling experiment on Edison super-
computer at the National Energy Research Scientific Com-
puting Center (NERSC). Edison is a Cray XC30 system; its
individual compute nodes have 24 Intel ‘Ivy Bridge’ processor
cores, at 2.4 GHz, with 64KB and 256KB of L1 and L2 cache,
respectively; the 24 cores share 64GB of RAM.

Our input is a snapshot of a combustion simulation, a
2562 × 512 scalar field. The input simplicial complex is
a Freudenthal triangulation of the grid, with ∼ 870 · 106

simplices. It is covered hierarchically via an oct-tree.
Figure 6 summarizes the running times (wallclock as re-

ported by the PBS job resource manager). Going from 8 to
32 processes we see a near perfect scaling, with another im-
provement by a factor of ∼ 1.5 going from 32 to 64 processes.
But then the returns diminish rapidly. The behavior is not
surprising: past 64 processes the binary reduction used to
merge different cover sets is top-heavy, i.e., it’s dominated
by the merge of the information from the final two sets. As
a result, adding more processes only speeds up the initial
computation, which is already plenty fast.

What is worse is what the figure does not show. We have
tried our code on larger data sets, but ran out of memory
because the merge reduction is dominated by its final stages.
Although the (n + m) term in the space analysis of the
Cascade algorithm is a gross worst-case overestimate, the

8 16 32 64 128 256 512

102.8

103

103.2

103.4

103.6

4,446

2,167

1,099

745 741
667

625

Number of processes

S
ec

o
n
d
s

Persistence (2562 × 512):

Perfect scaling:

Figure 6: Times to compute persistence diagram for
the 2562 × 512 combustion data set.

growth of this term does follow the growth of n, the size of
the domain, in many practical examples. So our technique
does not solve the memory limitations of the persistence
algorithm for the large data sets. We address this issue in
the next section.

7. CONCLUSION
Despite the evident limitation of a merge reduction, we

believe our theoretical results have a place as building blocks
of a practical parallel persistence algorithm. In particular,
an interesting (and, we believe, promising) research direction
is combining the domain decomposition approach of our
paper with the spectral sequence algorithm [28, 21]. One
could initially distribute the data with respect to a domain
decomposition: often such a distribution is either very cheap
to compute, or entirely free in the cases when the data is
supplied already decomposed directly from a simulation code,
or it is stored decomposed (for I/O-efficiency). In this case,
much processing could be performed on the individual chunks
of the data; this part of our algorithm scales perfectly. Then,
when combining the individual results, one could redistribute
the remaining matrix (the input to the Cascade algorithm)
with respect to the diagonal block partition of the spectral
sequence algorithm. This way we could limit the space needed
on any given processor.

Another important research topic is adapting our algorithm
to the computation of persistent cohomology. Although the
resulting pairing is the same, algorithms that keep track of
cocycles rather than cycles have been reported to perform
significantly better in practice [17, 18]. On the other hand,
they are built around tracking the matrix U−1 in the D = RU
decomposition, while the algorithm that we’ve presented
depends on manipulating the matrix R.

Similarly, it would be fruitful to understand the relation-
ship of our algorithm to various practical optimizations [20].

Unexpectedly to us, the original optimization [1] that re-
moves negative simplices from the columns of the matrix R
cannot be used in our context. The reason is that a simplex
that is negative in the filtration of a cover subcomplex Ki

may be positive in the filtration of the entire space K. On
the other hand, if a simplex creates a cycle in the filtration
of Ki (i.e., it is positive), it must be positive in the filtration
of the entire K. Thus the clearing optimization of Chen and
Kerber [19] is readily applicable.

Acknowledgements
We gratefully acknowledge the use of the resources of the Na-
tional Energy Research Scientific Computing Center (NERSC).
The authors wish to thank Wes Bethel for his support. This
work was supported by Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-05CH11231.

8. REFERENCES
[1] Herbert Edelsbrunner, David Letscher, and

Afra Zomorodian. Topological Persistence and
Simplification. Proceedings of the Annual Symposium
on Foundations of Computer Science, pages 454–463,
2000. Discrete and Computational Geometry,
28:511–533, 2002.

[2] Afra Zomorodian and Gunnar Carlsson.
Computing Persistent Homology. Discrete and
Computational Geometry, 33:249–274, 2005.

[3] Frédéric Chazal, Leonidas J. Guibas, Steve Y.
Oudot, Primož Škraba. Persistence-Based
Clustering in Riemannian Manifolds. Journal of the
ACM, 60, 2013.

[4] Vin de Silva, Dmitriy Morozov, Mikael
Vejdemo-Johansson. Persistent Cohomology and
Circular Coordinates. Discrete and Computational
Geometry, 45:737–759, 2011.

[5] Robert D. MacPherson and Benjamin
Schweinhart. Measuring Shape with Topology.
Journal of Mathematical Physics, 53, 2012.

[6] Rien van de Weygaert et al. Alpha, Betti and the
megaparsec Universe: on the topology of the cosmic
web. Trans. Comput. Sci. XIV, pages 60–101, 2011.

[7] David Cohen-Steiner and Herbert Edelsbrunner.
Inequalities for the curvature of curves and surfaces.
Foundations of Computational Mathematics, 7:391–404,
2007.

[8] Gunnar Carlsson, Tigran Ishkhanov, Vin de
Silva, Afra Zomorodian. On the Local Behavior of
Spaces of Natural Images. International Journal of
Computer Vision, 76:1–12, 2008.

[9] Herbert Edelsbrunner and John Harer.
Persistent homology — a survey. Surveys on Discrete
and Computational Geometry. Twenty Years Later.,
pages 257–282, 2008.

[10] Herbert Edelsbrunner and Dmitriy Morozov.
Persistent homology: theory and practice. Proceedings
of European Congress of Mathematics, pages 31–50,
2012.

[11] Robert Ghrist. Barcodes: The persistent topology of
data. Bulletin of the American Mathematical Society,
45:61–75, 2007.

[12] Shmuel Weinberger. What is. . . Persistent
Homology? Notices of the American Mathematical
Society, 58:36–39, 2011.

[13] Gunnar Carlsson. Topology and data. Bulletin of
the American Mathematical Society, 46:255–308, 2009.

[14] Nikola Milosavljević, Dmitriy Morozov, and
Primož Škraba. Zigzag persistent homology in matrix
multiplication time. Proceedings of the Annual
Symposium on Computational Geometry, pages
216–225, 2011.

[15] Herbert Edelsbrunner and Salman Parsa. On the
computational complexity of Betti numbers: reductions
from matrix rank. Proceedings of the Annual
Symposium on Discrete Algorithms, pages 152–160,
2014.

[16] Chao Chen and Michael Kerber. An
output-sensitive algorithm for persistent homology.
Computational Geometry: Theory and Applications,
46:435–447, 2013.

[17] Vin de Silva, Dmitriy Morozov, Mikael
Vejdemo-Johansson. Dualities in Persistent
(Co)Homology. Inverse Problems, 27, 2011.

[18] Jean-Daniel Boissonnat, Tamal K. Dey, Clément
Maria. The Compressed Annotation Matrix: An
Efficient Data Structure for Computing Persistent
Cohomology. Proceedings of European Symposium on
Algorithms, pages 695–706, 2013.

[19] Chao Chen and Michael Kerber. Persistent
Homology Computation With a Twist. Proceedings of
the European Workshop on Computational Geometry,
2011.

[20] Ulrich Bauer, Michael Kerber, Jan Reininghaus.
Clear and Compress: Computing Persistent Homology
in Chunks. Topological Methods in Data Analysis and
Visualization III, pages 103-117, 2014.

[21] Ulrich Bauer, Michael Kerber, Jan Reininghaus.
Distributed Computation of Persistent Homology.
Proceedings of Algorithm Engineering and Experiments
(ALENEX), 2014.

[22] Gunnar Carlsson, Vin de Silva, Dmitriy
Morozov. Zigzag Persistent Homology and
Real-valued Functions. Proceedings of the Annual
Symposium on Computational Geometry, pages
247–256, 2009.

[23] David Lipsky, Primož Škraba, Mikael
Vejdemo-Johansson. A spectral sequence for
parallelized persistence. arXiv:1112.1245, 2011.

[24] Afra Zomorodian and Gunnar Carlsson.
Localized Homology. Computational Geometry: Theory
and Applications, 41:126–148, 2008.

[25] Ryan H. Lewis and Afra Zomorodian. Multicore
Homology via Mayer Vietoris. arXiv:1407.2275,
submitted to Computational Geometry: Theory and
Applications, 2014.

[26] Dmitriy Morozov and Gunther Weber.
Distributed Merge Trees. Proceedings of the Annual
Symposium on Principles and Practice of Parallel
Programming, pages 93–102, 2013.

[27] David Cohen-Steiner, Herbert Edelsbrunner,
and Dmitriy Morozov. Vines and Vineyards by
Updating Persistence in Linear Time. Proceedings of
the Annual Symposium on Computational Geometry,
pages 119–126, 2006.

[28] Herbert Edelsbrunner and John Harer.
Computational Topology: an Introduction. AMS Press,
2010.

[29] Allen Hatcher. Algebraic Topology. Cambridge
University Press, 2002.

[30] Graeme Segal. Classifying spaces and spectral
sequences Publications Mathématiques de l’Institut des
Hautes Études Scientifiques, 34:105–112, 1968.

