
Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4
DOI 10.1186/s40668-016-0017-2

R E S E A R C H Open Access

In situ and in-transit analysis of
cosmological simulations
Brian Friesen1* , Ann Almgren2, Zarija Lukić3, Gunther Weber4, Dmitriy Morozov5, Vincent Beckner2 and
Marcus Day2

Abstract
Modern cosmological simulations have reached the trillion-element scale, rendering data storage and subsequent
analysis formidable tasks. To address this circumstance, we present a new MPI-parallel approach for analysis of
simulation data while the simulation runs, as an alternative to the traditional workflow consisting of periodically
saving large data sets to disk for subsequent ‘offline’ analysis. We demonstrate this approach in the compressible
gasdynamics/N-body code Nyx, a hybrid MPI + OpenMP code based on the BoxLib framework, used for large-scale
cosmological simulations. We have enabled on-the-fly workflows in two different ways: one is a straightforward
approach consisting of all MPI processes periodically halting the main simulation and analyzing each component of
data that they own (‘in situ’). The other consists of partitioning processes into disjoint MPI groups, with one
performing the simulation and periodically sending data to the other ‘sidecar’ group, which post-processes it while
the simulation continues (‘in-transit’). The two groups execute their tasks asynchronously, stopping only to
synchronize when a new set of simulation data needs to be analyzed. For both the in situ and in-transit approaches,
we experiment with two different analysis suites with distinct performance behavior: one which finds dark matter
halos in the simulation using merge trees to calculate the mass contained within iso-density contours, and another
which calculates probability distribution functions and power spectra of various fields in the simulation. Both are
common analysis tasks for cosmology, and both result in summary statistics significantly smaller than the original
data set. We study the behavior of each type of analysis in each workflow in order to determine the optimal
configuration for the different data analysis algorithms.

Keywords: cosmology; post-processing; halo-finding; power spectra; in situ; in-transit

1 Introduction
Data analysis and visualization are critical components of
large-scale scientific computing (Ross et al. ; Agra-
novsky et al. ; Nouanesengsy et al. ; Bleuler et al.
; Sewell et al.). Historically such workflows have
consisted of running each simulation on a static com-
pute partition and periodically writing raw simulation data
to disk for ‘post-processing.’ Common tasks include vi-
sualization and size reduction of data, e.g., calculating
statistics, field moments, etc. Other tasks can be domain-
specific: for example, evolving large nuclear reaction net-

*Correspondence: bfriesen@lbl.gov
1Lawrence Berkeley National Laboratory, 1 Cyclotron Road M/S 59R4010A,
Berkeley, USA
Full list of author information is available at the end of the article

works on passively advected tracer particles in supernova
simulations (Thielemann et al. ; Travaglio et al. ;
Röpke et al.). Often the data footprint of the out-
put from these post-processing tasks is much smaller than
that of the original simulation data (Heitmann et al. ;
Sewell et al.).

As simulations grow larger, however, this approach be-
comes less feasible due to disk bandwidth constraints as
well as limited disk capacity. Data analysis requirements
are outpacing the performance of parallel file systems, and,
without modifications to either workflows or hardware
(or both), the current disk-based data management infras-
tructure will limit scientific productivity (Ross et al. ;
Bennett et al.). One way to avoid exposure to the in-
creasingly disparate performance of disk I/O vs. inter- and
intra-node bandwidth is to limit the volume of data which

© 2016 Friesen et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

http://dx.doi.org/10.1186/s40668-016-0017-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s40668-016-0017-2&domain=pdf
http://orcid.org/0000-0002-1572-1631
mailto:bfriesen@lbl.gov

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 2 of 18

is written to disk. This strategy can be realized in differ-
ent ways; one approach is simply to write data relatively
infrequently, e.g., every large number of time steps when
evolving time-dependent problems. However, limiting the
number of time steps at which grid data is saved in or-
der to conserve disk space also discards simulation data
by ‘coarsening’ in the temporal dimension (Nouanesengsy
et al.). For example, in order to produce a mock galaxy
catalog from an N-body simulation, it is essential to create
halo merger trees, which describe the hierarchical mass as-
sembly of dark matter halos (Mo et al.). It is, however,
well recognized that in order to recover converged merger
trees, identification of halos with high temporal resolution
is needed (Srisawat et al.).

A second strategy for addressing the I/O problem is to
shift data analysis from executing ‘offline’ (on disk; Sewell
et al.) to running while the simulation data is still in
memory. Such a workflow can be expressed in a myriad
of ways, two of which we explore in this work. One ap-
proach consists of all MPI processes periodically halting
the simulation and executing analysis routines on the data
in memory (‘in situ’). The second method consists of di-
viding the processes into two disjoint groups; one group
evolves the simulation and periodically sends its data to
the other, which performs the analysis while the simula-
tion continues asynchronously (‘in-transit;’ e.g., Bennett
et al.). While in situ approaches have long been rec-
ognized as efficient ways of avoiding I/O, less attention has
been devoted to in-transit methods.

In situ and in-transit methods each have potential
strengths and weaknesses. The former method requires
no data movement beyond what is inherent to the analysis
being performed. Its implementation is also relatively non-
invasive to existing code bases, consisting often of adding a
few strategically placed function calls at the end of a ‘main
loop.’ However, if the analysis and simulation algorithms
exhibit disparate scaling behavior, the performance of the
entire code may suffer, since all MPI processes are required
to execute both algorithms. In-transit methods, on the
other hand, lead to more complex workflows and more
invasive code changes, which may be undesirable (Sewell
et al.). They also require significant data movement,
either across an interconnect or perhaps via specialized
I/O accelerator (‘burst buffer’). However, they can be fa-
vorable in cases where the analysis code scales differently
than that of the main simulation: since the analysis can
run on a small, separate partition of MPI processes, the re-
maining processes can continue with the simulation asyn-
chronously. This feature may become especially salient as
execution workflows of modern codes become more het-
erogeneous, since different components will likely exhibit
different scaling behavior.

The nature of the post-processing analysis codes them-
selves also plays a role in the effectiveness of in-transit im-
plementations. In many scientific computing workflows,

the ‘main’ simulation code performs a well defined task
of evolving a physical system in time, e.g., solving a sys-
tem of partial differential equations. As a result, its perfor-
mance characteristics and science goals are relatively sta-
tionary. Analysis codes, in contrast, are implementations
of a zoo of ideas for extracting scientific content from sim-
ulations. Being exploratory in nature, their goals are more
ephemeral and heterogeneous than that of the simulation
itself, which in general leads to more diverse performance
behavior. The in-transit framework presented here pro-
vides the ability for analysis codes to be run together with
the simulation, but without a strict requirement of being
able to scale to a large number of cores. It is therefore use-
ful to think of this in-transit capability as adding ‘sidecars’
to the main vehicle: in addition to resources allocated ex-
clusively for running the simulation, we allocate a set of
resources (often much smaller) for auxiliary analysis tasks.

In this work we explore both in situ and in-transit data
analysis workflows within the context of cosmological sim-
ulations which track the evolution of structure in the uni-
verse. Specifically, we have implemented both of these
workflows in the BoxLib framework, and applied them to
the compressible gasdynamics/N-body code Nyx, used for
simulating large scale cosmological phenomena (Almgren
et al. ; Lukić et al.). We test each of these work-
flows on two different analysis codes which operate on Nyx
data sets, one which locates dark matter halos, and another
which calculates probability distribution functions (PDFs)
and power spectra of various scalar fields in the simula-
tion. In Section we describe the scientific backdrop and
motivation for the data analysis implementations which we
have tested. In Section we provide the details of our im-
plementation of the in situ and in-transit workflows in the
BoxLib framework. Section contains a description of the
two analysis codes which we explored using both in situ
and in-transit methods. We discuss the performance of the
two codes in each of the two analysis modes in Section ,
and we discuss prospects and future work in Section .

2 Cosmological simulations
Cosmological models attempt to link the observed distri-
bution and evolution of matter in the universe with fun-
damental physical parameters. Some of these parameters
serve as initial conditions for the universe, while others
characterize the governing physics at the largest known
scales (Davis et al. ; Almgren et al.). Numerical
formulations of these models occupy a curious space in
the data analysis landscape: on one hand, each cosmology
simulation can be ‘scientifically rich’ (Sewell et al.):
exploratory analysis of the simulation may lead to new in-
sights of the governing physical model which could be lost
if the raw data is reduced in memory and discarded. On
the other hand, many models exhibit a highly nonlinear
response to the initial perturbations imposed at high red-
shift, in which case isolated ‘heroic’ simulations may not

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 3 of 18

capture all of the features of interest which arise from such
nonlinear behavior (Davis et al. ; Almgren et al.).
Instead, one may wish to perform many such simulations
and vary the initial conditions of each in order to capture
the nuanced behavior of the models; such behavior can of-
ten be expressed even in a highly reduced set of data (e.g.,
a density power spectrum). We emphasize, then, that the
data analysis methods presented here represent only a sub-
set of techniques which will be required to manage the
simulation data sets in future scales of computational cos-
mology.

2.1 Formalism
The backdrop for the data post-processing methods de-
scribed in this work is Nyx, a compressible gasdynamics/
N-body particle code for cosmological simulations of
baryonic and cold dark matter (CDM) (Almgren et al.
; Lukić et al.). Nyx characterizes the expanding
universe using the Friedman equation,

ȧ
a

= H

√
Ω

a + ΩΛ, ()

where a ≡ (+z)–, where z is the redshift, H is the Hubble
constant, ΩΛ is the cosmological constant, and Ω is the
total matter content in the universe at z = . The continuity
equation for the baryonic gas satisfies

∂ρb

∂t
= –

a
∇ · (ρbU), ()

where ρb ≡ aρproper is the co-moving baryon density, and
U is the proper baryonic velocity. The baryon momentum
equation is

∂[aρbU]
∂t

= –∇ · (ρbUU) – ∇p + ρbg, ()

where p ≡ approper is the co-moving pressure, and g is the
gravitational acceleration vector. Nyx uses a dual-energy
formalism to evolve the baryonic energy (Bryan et al.
):

∂[aρbe]
∂t

= –a∇ · (ρbUe) – ap∇ · U

+ aȧ
[(

 – (γ –)
)
ρbe

]
+ aΛHC, ()

∂[aρbE]
∂t

= –a∇ · (ρbUE + pU) + aρbU · g

+ aȧ
[(

 – (γ –)
)
ρbe

]
+ aΛHC, ()

where E ≡ e + |U|/ is the total energy, e is the internal en-
ergy, γ ≡ CP/CV , and ΛHC represents all heating and cool-
ing terms. This dual-energy formalism is necessary due to

the numerical misbehavior inherent to hypersonic flows,
where E/e � . At the end of each time step, Nyx synchro-
nizes E and e, the method for which is determined by their
relative values. The chemical equation of state for a mix-
ture of hydrogen and helium, as well as the heating and
cooling terms in ΛHC, are described in Lukić et al. ().

The cold dark matter is treated as a pressureless, non-
relativistic fluid, characterized by the Vlasov equation:

∂f
∂t

+

ma p · ∇f – m∇φ · ∂f
∂p

= , ()

where f is the phase-space distribution of dark matter, m
is its mass, p is its momentum, and φ is its gravitational
potential. Nyx solves the Vlasov equation using a collision-
less N-body treatment of dark matter particles. Finally, the
self-gravity of the simulation is treated using

∇φ =
πG

a
(ρb + ρdm – ρ), ()

where G is the gravitational constant, and ρ the average
of ρb + ρdm over the whole domain. Both baryonic and
dark matter contribute to and are affected by the total self-
gravity of the system.

Nyx is based on BoxLib, an MPI + OpenMP parallelized,
block-structured, adaptive mesh refinement (AMR) frame-
work (BoxLib). It evolves the two-component (hy-
drogen and helium) baryonic gas equations with a second-
order accurate piecewise-parabolic method, using an un-
split Godunov scheme with full corner coupling (Colella
; Almgren et al. ; Almgren et al.). It solves
the Riemann problem iteratively using a two-shock ap-
proximation (Colella and Glaz). The dark matter par-
ticles interact with the AMR hierarchy using a ‘cloud-in-
cell’ method (Hockney and Eastwood). The details of
the numerical methods used to solve the above equations
are provided in Almgren et al. ().

The Nyx code is fully implemented with AMR capa-
bilities, including subcycling in time. The effectiveness of
AMR has been validated in simulations of pure dark mat-
ter, as well as the ‘Santa Barbara cluster’ problem (Frenk
et al. ; Almgren et al.). However, the simula-
tions presented in this work focus on the Lyman-α for-
est, which consists of large-scale systems in the intergalac-
tic medium (IGM) which absorb radiation, preferentially
Lyman-α, from distant quasars (Lukić et al.). The
IGM spans virtually the entire problem domain in these
simulations, and as a result the signals of interest (optical
depth, fluxes, etc.) are rarely localized to a specific region.
As a results, it is generally impractical from a code per-
formance perspective to use AMR at all in Lyman-α sim-
ulations, and as a results, all of our simulations here use a
single level, with no AMR.

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 4 of 18

2.2 Simulation data and post-processing
A typical Nyx simulation evolves a cosmology from high
redshift (z >) to the present (z =) in many thou-
sands of time steps. The size of each time step is limited
by the standard CFL condition for the baryonic fluid, as
well as by a quasi-CFL constraint imposed on the dark mat-
ter particles, and additionally by the evolution of the scale
factor a in the Friedmann equation; details of these con-
straints are described in Almgren et al. (). Currently
the largest Nyx simulations are run on a , grid, and at
this scale each plotfile at a single time step is ∼ TiB, with
checkpoint files being even larger; a complete data set for a
single simulation therefore reaches well into the petascale
regime. A single simulation can therefore fill up a typical
user allocation of scratch disk space (O() TiB) in just a
few time steps. We see then that modern simulation data
sets represent a daunting challenge for both analysis and
storage using current supercomputing technologies.

Nyx simulation data lends itself to a variety of popu-
lar post-processing cosmological analysis tasks. For exam-
ple, in galaxies and galaxy clusters, observations have in-
dicated that dark matter is distributed in roughly spherical
‘halos’ that surround visible baryonic matter (Davis et al.
). These halos provide insight into the formation of
the largest and earliest gravitationally bound cosmological
structures. Thus a common task performed on cosmolog-
ical simulation data sets is determining the distribution,
sizes, and merger histories of dark matter halos, which are
identified as regions in simulations where the dark matter
density is higher than some prescribed threshold. A recent
review (Knebe et al.) enumerates different algo-
rithms commonly used to find halos. To process data from
Nyx (an Eulerian code), we use a topological technique
based on iso-density contours, as discussed in Section ..
The approach produces results similar to the ‘friends-of-
friends’ (FOF) algorithm used for particle data (Davis et al.
).

A second common data post-processing task in cosmo-
logical simulations is calculating statistical moments of
different fields, like matter density, or Lyman-α flux. The
first two moments - the PDF and power spectrum - are
often of most interest in cosmological simulation analy-
sis. Indeed, it is fair to say that modern cosmology is es-
sentially the study of the statistics of density fluctuations,
whether probed by photons, or by more massive tracers,
such as galaxies. The power spectrum of these fluctuations
is the most commonly used statistical measure for con-
straining cosmological parameters (Palanque-Delabrouille
et al. ; Anderson et al. ; Planck Collaboration et al.
), and is one of the primary targets for numerical sim-
ulations. In addition to cosmology, one may be interested
in predictions for astrophysical effects from these simu-
lations, like the relationship between baryonic density ρb
and temperature T in the intergalactic medium, or details
of galaxy formation.

3 In situ vs. in-transit
Having established the scientific motivation for data post-
processing in cosmological simulations, we now turn to
the two methods we have implemented for performing on-
the-fly data analysis in BoxLib codes.

3.1 In situ
To implement a simulation analysis tool in situ in BoxLib
codes such as Nyx, one appends to the function
Amr::CoarseTimeStep()a a call to the desired anal-
ysis routine. All MPI processes which participate in the
simulation execute the data analysis code at the conclusion
of each time step, operating only on their own sets of grid
data. As discussed earlier, the advantages of this execu-
tion model are that it is minimally invasive to the existing
code base, and that it requires no data movement (except
that inherent to the analysis itself). One potential disad-
vantage of in situ analysis is that if the analysis algorithm
does not scale as well as the simulation itself, the execution
time of the entire code (simulation + analysis) will suffer.
Indeed, we encounter exactly this bottleneck when calcu-
lating power spectra, which we discuss in Section ..

3.2 In-transit
The in-transit implementation of data analysis codes in
Nyx is more complex than the in situ approach, due to
the necessary data movement and the asynchrony of the
calculation. During initialization, BoxLib splits its global
MPI communicator into two disjoint communicators,
m_comm_comp for the group which executes the simula-
tion, andm_comm_sidecar for the ‘sidecar’ group which
performs the analysis. The user prescribes the sizes of each
group at runtime, and the sizes are fixed for the duration of
code execution. Upon reaching a time step at which anal-
ysis is requested, Nyx transfers via MPI the requisite data
from the compute group to the sidecar group. Some of
this data is copied to every sidecar process, e.g., the geo-
metric information of the problem domain and how Boxes
are arranged on the domain; to communicate such data,
Nyx performs an intergroup MPI_Bcast(). The bulk of
the data to be communicated consists of the floating-point
state field stored in each Box; in BoxLib these data are
called Fortran Array Boxes (FABs). Because we have two
MPI groups and two communicators when executing in-
transit (as well as an intergroup communicator connect-
ing the two), we generate two ‘distribution maps’ for the
simulation data, one describing the distribution of FABs
across processes in the compute group, and the other in
the sidecar group. This provides BoxLib with a bijective
mapping of the FAB data distribution between the two
groups, allowing us to perform point-to-point intergroup
MPI_Send()s and MPI_Recv()s to transfer the data
between corresponding processes in the two groups. We
summarize the method for sending and receiving this data
in Algorithm .

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 5 of 18

Figure 1 Example schematic illustrating data movement of block-structured grids from the simulation MPI group to the sidecar group
when running in-transit. Each Box is uniquely numbered, and Boxes shaded in the same color are located on the same MPI process, whose rank is
identified in parentheses. In this example, a grid composed of 16 Boxes moves from a distribution across 4 processes, with 4 Boxes per process, to a
new distribution across 2 processes, with 8 Boxes per process.

if I am a compute proc then
broadcast Box list to analysis procs;
receive distribution map on analysis procs;
foreach FAB I own do

get global FAB index;
find which sidecar proc will own FAB;
send FAB data to sidecar proc;

end
else

receive Box list from compute procs;
generate new distribution map on sidecar group;
broadcast distribution map to compute procs;
foreach FAB I will receive do

get global FAB index;
find which compute proc owns FAB;
receive FAB from compute proc;

end
end

Algorithm : Data movement logic when sending dis-
tributed grid data from compute processes to sidecar pro-
cesses via MPI.

The distribution of data over each MPI group need not
be the same, since each group can have arbitrary size. For
example, if the simulation contains , Boxes and the
compute group has , processes, each process will own
 Boxes; however, if the sidecar group has only pro-
cesses, each process will own Boxes. After the FABs have
been sent to the analysis group, that group executes the
desired analysis code, while the compute group continues
with the simulation. A schematic of this Box movement
across MPI groups is depicted in Figure .

The receipt of FABs onto a single MPI process is an in-
herently serial process. This property can affect code per-
formance adversely if a large number of compute processes
send their data to a small number of sidecar processes, be-
cause a compute process cannot continue with the simu-

lation until all of its FABs have been sent, and each sidecar
process can receive only one FAB at a time. In the example
shown in Figure , process receives FABs from processes
 and ; if, by coincidence, process receives all four of pro-
cess ’s FABs in order, process can continue with its next
task before process ; however, process cannot continue
until it has received all FABs from both processes and .
In this example the ratio of sending to receiving processes,
R ≡ Ns/Nr = , is relatively small; the serialization of this
data transfer will have only a minor effect on aggregate
code performance. However, if R ∼ O() or O(,),
the effect will be more pronounced.

3.3 Task scheduling
In both the in situ and in-transit workflows in BoxLib, we
have added a simple queue-based, first-in-first-out sched-
uler which governs the order of data analysis tasks being
performed. As we generally have a small number of tasks
to perform during analysis, this approach is quite satisfac-
tory. If the number of analysis tasks grows larger (a trend
which we expect), then the workloads of each of these tasks
will become more complex, and the variability in scaling
behavior of each may be large as well. In this case a more
sophisticated scheduling system - in particular one which
accounts for a heuristic describing the scalability of each
task and allocates sidecar partitions accordingly - may be-
come more useful.

4 Cosmological simulation analysis tools
Many types of cosmological simulations can be broadly
characterized by a small set of quantities which are de-
rived (and highly reduced) from the original simulation
data set. Such quantities include the distribution and sizes
of dark matter halos, PDFs and power spectra of baryon
density, dark matter density, temperature, Lyman-α opti-
cal depths, etc. (Lukić et al.). We obtain these quanti-
ties from Nyx simulation data using two companion codes:
Reeber, which uses topological methods to compute dark
matter halo sizes and locations; and Gimlet, which com-
putes statistical data of various fields. Because the algo-

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 6 of 18

Figure 2 Illustration of merge trees and their relationships to isosurfaces. The top subfigure (a) illustrates the halo definition based on
iso-density contours. Halos are regions above a density threshold tboundary (light gray region) whose maximum density exceeds thalo (dark gray
regions). The bottom subfigure (b) shows the merge tree which corresponds to the level set parameters tboundary and thalo given in Figure 2(a). The
black dots correspond to points on the same super-level set, with each representing a different connected component on that super-level set. The
green dots indicate saddle points of the scalar function, while the red dots indicate local maxima.

rithms in these codes are very different, the codes them-
selves exhibit different performance and scaling behavior.
Therefore, they together span a useful parameter space for
evaluating the utility of in situ and in-transit methods. In
addition to operating on data in memory, both Reeber and
Gimlet are capable of running ‘offline,’ in the traditional
post-processing workflow described in Section . We de-
scribe each of these codes below.

4.1 Reeber
Reeber is a topological analysis code, which constructs
merge trees of scalar fields. A merge tree describes the re-
lationship among the components of super-level sets, i.e.,

regions of the data set with values above a given threshold.
The leaves of a merge tree represent maxima; its internal
nodes correspond to saddles where different components
merge; its root corresponds to the global minimum (Mo-
rozov and Weber). In the case of Reeber operating
on Nyx data sets, the points x and y correspond to distinct
grid points r and r, and the function f corresponds to the
density ρ(r).

An illustration of Reeber’s halo-finding algorithm is
shown in Figure (a). To identify iso-density-based halos
efficiently, we traverse the merge tree upwards from the
root (i.e., from the global minimum density), finding all

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 7 of 18

edges that cross the value tboundary. This operation corre-
sponds to drawing the merge tree such that the height of
each node corresponds to its function value and identify-
ing all sub-trees above a line at the height of tboundary. We
then traverse each sub-tree to identify its highest maxi-
mum. If this maximum exceeds thalo, the sub-tree repre-
sents a halo, and we compute its position as the centroid
of all grid points belonging to the sub-tree as well as its
mass as the cell-size-weighted sum of all grid points be-
longing to the sub-tree. The merge tree corresponding to
the halo-finding parameters in Figure (a) is illustrated in
Figure (b).

As a topological descriptor, a merge tree is primarily a
means to an end: its utility comes from providing an effi-
cient way to query a field for interesting topological infor-
mation, e.g., are two regions of a field connected above a
given threshold, or what is the number of connected com-
ponents at density ρ whose density maximum is higher
than ρ ′? In Nyx simulations, one requires the answer to
exactly these questions when identifying the locations,
distribution, and merger histories of dark matter halos,
as discussed in Section . Given the dark matter den-
sity field and its boundary conditions, Reeber first con-
structs its merge tree, and then uses it to identify halos
based on user-defined density thresholds (Morozov et al.,
in preparation). The merge tree itself does not depend on
any parameters, only on the input function. Accordingly,
one can repeatedly query the same tree with different halo
thresholds without reconstructing it each time. A recent
result applying Reeber to various Nyx simulation data sets
is shown in Figure .

Given that so many models and methods for generat-
ing halo mass functions already exist (Knebe et al.),
it is prudent to validate the iso-density approach used by
Reeber by comparing with others. We have found close
agreement with the FOF halo mass function (see Figure),
although the two approaches for finding halos are quite
different. Even more useful for comparison would be an-
alytic or semi-analytic halo mass function results, such
as the Press-Schechter formalism (Press and Schechter
); however, as shown in Lukić et al. (), the FOF
model and the spherical collapse model used in the Press-
Schechter function are incompatible.

Implementing a scalable representation of merge trees
on distributed memory systems is a challenging but crit-
ical endeavor. Because the merge tree is a global repre-
sentation of the entire field, traditional approaches for dis-
tributing the tree across independent processes inevitably
require communication-intensive reduction to construct
the final tree, which in turn lead to poor scalability. Fur-
thermore, modern simulations operate on data sets that
are too large for all topological information to fit on a sin-
gle compute node. Reeber’s ‘local-global’ representation
addresses this problem by distributing the merge tree, so

Figure 3 Convergence of the halo mass function in Nyx
simulations with the Reeber halo finding code. Solid lines
demonstrate how Reeber’s distribution of halo masses change when
increasing the spatial resolution in Nyx runs. As expected, we observe
the differences only at the low-mass end, since coarse grids cannot
capture well small halos, while the agreement on the high-mass end
is good. The dashed lines show results of a FOF halo finder when the
linking length parameter is chosen to match approximately the
iso-density contour used in Reeber. FOF results are used as a
validation here, showing that Reeber results converge to the ‘correct’
answer.

that each node stores detailed information about its local
data, together with information about how the local data
fits into the global merge tree. The overhead from the extra
information is minimal, yet it allows individual processors
to globally identify components of super-level sets with-
out any communication (Morozov and Weber). As
a result, the merge trees can be queried in a distributed
way, where each processor is responsible for answering
the query with respect to its local data, and a simple re-
duction is sufficient to add up contribution from different
processes. A detailed description of merge trees, contour
trees, and their ‘local-global’ representation, which allows
Reeber to scale efficiently on distributed memory systems,
is given in Morozov and Weber (), Morozov and We-
ber () and its application to halo finding in Morozov
et al. (in preparation).

4.2 Gimlet
Gimlet calculates a variety of quantities relevant for the in-
tergalactic medium studies, which are derived from differ-
ent fields in Nyx, including:

- optical depth and flux of Lyman-α radiation along
each axis

- mean Lyman-α flux along each axis
- -D probability distribution function (PDF) of

temperature vs. baryon density
- PDF and power spectrum of Lyman-α flux along each

axis

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 8 of 18

- PDF and power spectrum of each of
- baryon density
- dark matter density
- total matter density
- neutral hydrogen density

We calculate the optical depth τ of Lyman-α radiation in
the optically thin limit (Lukić et al.):

τν ≡
∫

drnXσν � πe

mec
f

∫
dr

nX

ΔνD

exp[–(ν–ν
Δν

)]√
π

, ()

where nX is the number density of neutral hydrogen, σν

is the opacity to Lyman-α radiation, e is the elementary
charge, me is the electron mass, c is the speed of light, f is
the oscillator strength of the Lyman-α transition, ΔνD ≡
(b/c)ν is the Doppler width of the Lyman-α transition
with the Doppler parameter b = bthermal ≡ √

kBT/mH , T
is the gas temperature, and mH is the mass of the hydro-
gen atom. In the optically thin limit, and absent scattering
effects, τ becomes a purely local quantity (Mihalas).
Similarly, the flux due to Lyman-α radiation is also a local
quantity, being a simple rescaling of the neutral hydrogen
number density nX (Lukić et al.):

Fν = exp(–τν). ()

The most interesting quantities calculated by Gimlet are
power spectra of the Lyman-α flux and matter density.
Gimlet uses FFTW (Frigo and Johnson) to calcu-
late the discrete Fourier transformation (DFT) of the grid
data required for power spectra. We note here also that
FFTW’s domain decomposition strategy for -D DFTs
has implications which are especially relevant for a study
of in situ and in-transit analysis performance. We discuss
these in Section .

Given a -D scalar field, Gimlet calculates its DFT in two
different ways:

. It divides the grid into one-cell-thick columns
which span the length of the entire problem
domain. All columns are aligned along one of the
axes. It then compute the -D DFT and along each
column individually, accumulating the results into a
power spectrum for the entire grid. This approach
captures line-of-sight effects of the cosmology
simulation, as discussed in Lukić et al. (). Each
DFT can be executed without MPI or domain
decomposition, since the memory footprint of each
column is small, even for large problem domains.

. It computes the -D DFT and power spectrum of
the entire grid. This requires exploiting FFTW’s
domain decomposition features enabled with MPI.

As an example of Gimlet application, we show in Figure
a comparison between the observed Lyman-α flux power
spectrum, and predictions from Nyx simulations. We

Figure 4 Power spectrum of Lyman-α flux from 3 Nyx
simulations using the Gimlet analysis code, compared to
observational data presented in Viel et al. (2013). The black line is
the result of a ΛCDM cosmological model with the reionization
history described in Haardt and Madau (2012). The blue and red lines
are two WDMmodels, differing in their choice of dark matter particle
mass:mDM = 0.85 keV (blue) andmDM = 2.1 keV (red).

plot a dimensionless power spectrum calculated along the
line of sight versus the wavelength mode k. We show here
one redshift only using data from Viel et al. (), and we
demonstrate how power spectra differ when changing the
thermal velocity dispersion of the dark matter. The black
line is the cold dark matter model which has no thermal ve-
locity component in the initial state. The blue and red lines
correspond to two different warm dark matter (WDM)
models, mDM = . keV and mDM = . keV, respectively.
The main task of Nyx simulations with the Gimlet anal-
ysis pipeline is to determine which cosmological model
and reionization history fits the best existing observational
data, and Figure is a simple example when we vary only
one parameter out of ∼.

The two basic types of calculations Gimlet performs -
PDFs and power spectra - exhibit quite different perfor-
mance behavior. PDFs scale well, since each MPI process
bins only local data. A single MPI_Reduce() accumu-
lates the data bins onto a single process, which then writes
it to disk. Power spectra, on the other hand, require cal-
culating communication-intensive DFTs. The need to re-
organize data to fit domain decomposition required by the
FFTW library - which differs from the native Nyx decom-
position - incurs additional expense. Gimlet’s overall scal-
ability, therefore, is a convolution of these two extremes.

5 Performance
In this section we examine detailed performance figures
for the in situ and in-transit workflows described above.
All of these tests were performed on Edison, a Cray XC
supercomputing system, at the National Energy Research

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 9 of 18

Scientific Computing Center (NERSC). Edison’s compute
partition consists of , nodes, each configured with two
-core Intel Xeon ‘Ivy Bridge’ processors at . GHz, and
 GB of DDR memory at , MHz. Compute nodes
communicate using a Cray Aries interconnect which has
‘dragonfly’ topology. The high-performance scratch file
system is powered by Lustre, and has a total capacity
of . PB (. PiB) and a peak bandwidth of GB/s
(. GiB/s), distributed across object storage targets
(OSTs).

First we present results of some synthetic performance
benchmarks, in order to establish baselines by which to
compare the performance of real analyses performed by
the Reeber and Gimlet. Then we present the results from
the analysis codes themselves. We note that, although Nyx
and other BoxLib-based codes use OpenMP to express in-
tra-node parallelism, we disabled OpenMP for all perfor-
mance tests presented below (in Nyx, Gimlet, and Reeber),
since the focus of this work is primarily on inter-node re-
lationships. Furthermore, because both the Box size and
the total problem domain size of Nyx simulations is typi-
cally a power of , we use only up to MPI processes per
socket on an Edison compute node, always with only MPI
process per core. The extra cores on each socket gen-
erally do not expedite the computation significantly, both
due to load imbalance (and rarely divide evenly into
the problem domain size), as well as to the fact that, even
with only out of cores active on a given socket, we
already saturate most of the available memory bandwidth
due to the low arithmetic intensity of the finite-volume al-
gorithms in Nyx (Williams et al.). Again, we applied
this power-of- rule to the Gimlet and Reeber codes as
well.

5.1 Lustre file write performance
In situ and in-transit methods attempt to circumvent the
limitations of not only disk capacity, but also disk band-
width. It is therefore of interest to this study to measure
the time a code would normally spend saving the required
data to disk in the traditional post-processing workflow.
To do so, we measured the time to write grids of various
sizes, each containing state variables,b to the Lustre file
system on Edison. BoxLib writes simulation data in paral-
lel using std::ostream::write to individual files; it
does not write to shared files. The user specifies the num-
ber of files over which to distribute the simulation data,
and BoxLib in turn divides those files among its MPI pro-
cesses. Each process writes only its own data, and only one
process writes to a given file at a time, although a single
file may ultimately contain data from multiple processes.
The maximum number of files allowable is the number of
processes, such that each process writes its own data to a
separate file.

We varied the size of the simulation grid from

to ,, divided among Boxes of size . This is a

small Box size for Lyman-α simulations which typically
do not use mesh refinement; however, it is entirely typical
for many other BoxLib-based applications which perform
AMR. The maximum number of processes for each test
was ,, although for tests which had fewer than ,
total Boxes (namely, those with and simulation
domains), we set the number of processes such that each
process owned at least Box. We also varied the number of
total files used, from up to ,, except in cases where
there were fewer than , total Boxes.

We illustrate the file write performance on Lustre in Fig-
ure . We find that, for the largest grid tested (,), the
highest achievable write bandwidth on the Edison Lustre
file system is ∼ GiB/s, about (∼)% of the peak band-
width available on this file system. For the grid, which
serves as our test case when we explore the performance of
MPI traffic when running Nyx analysis codes in-transit in
Section , the highest write bandwidth is ∼ GiB/s, about
% of peak bandwidth.

5.2 In-transit MPI performance
Before exploring the analysis workflow performance study
which is presented in Section ., here we first perform
two simple studies which measure the time required to
move grid data from one MPI group to another. In one test
we used a -component grid of size ,, which has a
total memory footprint of ∼ GiB. The grid was divided
into Boxes of size , yielding , total Boxes. We then
fixed the total number of MPI processes at ,, and var-
ied the number of analysis processes from to ,
(with the size of the compute group varying from ,
to , processes). The results for this test are shown in
Figure . In the second test, we fixed the number of total
processes at , and also fixed the number of analysis
processes at ,, leaving , processes in the compute
group. We then varied the size of the grid to be transferred
from (Boxes with total size MiB) to ,

(, Boxes with total size GiB). The results are
presented in Figure .

We see from this figure that the fastest bandwidth we
achieve across the interconnect is ∼ GiB/s. The peak
bandwidth for the entire Aries interconnect on Edison
is . TB/s (∼. TiB/s) distributed across , com-
pute nodes, indicating a peak bandwidth per node of
∼. GiB/s. From our test, the highest bandwidth per
node was ∼ MiB/s, only about % of peak. Since sev-
eral different configurations in this test appear to plateau
at the same bandwidth, this limit may be due to high la-
tency costs associated with sending and receiving so many
small Boxes. Were the Boxes much larger, as they often
are in Lyman-α simulations, the MPI traffic would consist
of fewer and larger messages, which may achieve higher
per-node bandwidth. However, even performing so far
below the peak, the bandwidth of moving Boxes across

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 10 of 18

Figure 5 Aggregate bandwidth (GiB/s) for writing 10-component simulation grids of varying sizes to Lustre. Each data point shows the
statistical mean over 5 writes, with the standard deviation shown in error bars. The lack of data points for the 1283 and 2563 grids at large numbers of
writers are configurations with more MPI processes than total Boxes, such that some portion of processes would write no data.

Figure 6 Total bandwidth during transfer of a 10-component 1,0243 grid (32,768 Boxes) among 8,192 total MPI processes, with varying
sizes of compute and analysis groups. The standard deviation over 5 iterations is indicated with error bars.

the interconnect for the grid is still a factor of
faster than the fastest bandwidth achieved saving it to disk
on the Edison Lustre file system (∼% of peak; cf. Fig-
ure).

From this simple study we can estimate that, in terms of
pure transfer speed (neglecting analysis or simulation scal-

ing behavior), the optimal ratio of compute to analysis on
Edison is R ∼ . For analysis algorithms which strong scale
efficiently, this should be a useful metric. The poor band-
width for the small grids in Figure arises because there
are more MPI processes than Boxes, so many processes
do not participate in the transfer process; the simulation

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 11 of 18

Figure 7 Total bandwidth during transfer of 10-component grids of varying sizes from 7,168 compute MPI processes to 1,024 analysis
MPI processes. The standard deviation over 5 iterations is indicated with error bars.

therefore has access to a smaller portion of the aggregate
available bandwidth on the interconnect. In all cases, the
total transfer time is on the order of seconds. If analysis
is performed infrequently, this comprises a small compo-
nent of the total run time of most Nyx simulations, which
often take �O() s. However as the frequency of analy-
sis increases, the total time spent moving data can become
considerable, and an in situ approach may become more
attractive.

The complexity of in-transit analysis presents a number
of factors one should consider in order to optimize code
performance. For example, the cost of moving large vol-
umes of data across MPI groups via an interconnect is sig-
nificant, but can nevertheless be dwarfed by the cost of the
analysis computation itself. Additionally, some analysis al-
gorithms scale poorly - significantly worse than the simula-
tion - in which case incurring the penalty for moving data
to a small set of sidecar processes so that the simulation
can continue may lead to the best overall performance of
the code. On the other hand, the data movement penalty
makes in-transit data processing impractical for applica-
tions which are already inexpensive to calculate, or which
scale very well, or both. These types of analysis may be
more amenable to in situ approaches.

In-transit analysis introduces an additional layer of load
balancing complexity, in that an optimally performant sim-
ulation maximizes the asynchrony of computation and
analysis. To illustrate this point, suppose a simulation for
evolving a system forward in time reserves C MPI pro-
cesses for computation and A for analysis. Denote by τc

the time required for the compute processes to complete
one time step of the simulation (without analysis), and τa
the time for the analysis processes to complete analysis for
one set of data. If the user requests that the analysis execute
every n time steps, then an optimal configuration of com-
pute and analysis groups would have nτc � τa. If the former
is larger, then the analysis group finishes too early and has
no work to do while it waits for the next analysis signal;
the converse is true if the latter is larger. If one finds that
nτc > τa, then one option is to decrease A, the number of
analysis processes. This will increase the τa but will simul-
taneously decrease τc since we assume that C + A = const.
A second option to equilibrate the two time scales is to
decrease n, although this option may not be useful in all
cases, since n is likely driven by scientific constraints and
not code performance. If one relaxes the restriction that
C + A = const., then one can adjust the size of the analysis
group arbitrarily while keeping the compute group fixed in
order to balance the two time scales τc and τa.

The risk of load imbalance described above traces its
roots to the static nature of the roles of compute and anal-
ysis processes which we have assumed for this example,
and which has traditionally been characteristic of large-
scale simulations. Much of it could be ameliorated using
dynamic simulation ‘steering,’ in which the simulation pe-
riodically analyzes its own load balance and adjusts the
roles of its various processes accordingly. Returning to the
above example, one may request an additional task from
the analysis group: every m time steps, it measures the
time spent in MPI calls between the compute and analy-
sis groups (such calls remain unmatched while one group

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 12 of 18

is still working). If nτc > τa, then before the next time step
the simulation re-sizes the MPI groups to increase C and
decrease M, by an amount commensurate with the length
of the time spent waiting for both groups to synchronize.
An even more exotic solution would be to subsume all re-
sources into the compute group until the nth time step, at
which point the simulation spawns the analysis group on
the spot, performs the analysis, and re-assimilates those
processes after analysis is complete. Another possibility
would be to decompose the tasks of simulation evolution
and post-processing within a node, using OpenMP, for ex-
ample. This may alleviate the data movement penalty, re-
quiring data to move only across NUMA domains within
a compute node (or perhaps not at all), the speed of which
would be significantly faster than moving across the inter-
connect. The disadvantage of this approach would be that
all codes involved in the simulation/post-processing work-
flow would need to contain a hybrid MPI + OpenMP im-
plementation; for codes which are old or large, or which
have a large ecosystem of already existing ‘companion’
codes for post-processing, this can be a laborious pro-
cess. If OpenMP is not an option for controlling process
placement on compute nodes, some MPI libraries provide
mechanisms for placing processes on nodes by hand, al-
though we are unaware of any truly portable method of do-
ing so. The heuristics used to adjust the simulation config-
uration will likely be problem-dependent and will need to
draw from a statistical sample of simulation performance
data; we are actively pursuing this line of research.

5.3 Problem setup
Having established some synthetic benchmarks for disk
and interconnect bandwidths, we now turn to the applica-
tion of these workflows on science problems in Nyx. Here
we present an exploratory performance analysis of in situ
and in-transit implementations of both Reeber and Gim-
let. We evolved a Lyman-α forest problem (Lukić et al.
) uniform grid (no mesh refinement) for time steps,
resuming a previous simulation which stopped at redshift
z ∼ . We chose this cosmological epoch because this is
often when the most ‘post-processing’ is performed, due
the wealth of observational data available for compari-
son (Heitmann et al. ; Lukić et al.). The domain
boundaries were periodic in all three dimensions. We ran
the simulation in three different configurations: with no
analysis, with Reeber, and with Gimlet.c In simulations
which perform analysis, the analysis code executed every
time steps, starting at step . We choose this configuration
such that the last time step during which analysis is per-
formed is number ; this gives the sidecar group a ‘com-
plete’ window of simulation time steps (-) in which
to perform the last analysis. Finally, we repeated this calcu-
lation on two different grid sizes, and ,, in order
to explore the performance of these algorithms at different
scales.

When running in situ, we ran the simulation and analy-
sis on a fixed number of MPI processes (, processes
for the problem and , for the , problem).
For the in-transit mode, we chose the number of MPI pro-
cesses in two different ways. First, we fixed the number of
total processes at the same number used for the in situ
run, and varied the number of processes allocated to ei-
ther the simulation or sidecars. This approach shows the
optimal balance of each if the goal is to fit the simulation
into a desired queue on a computational system which has
a restriction on the maximum number of total processes.
In the text which follows, we label this configuration ‘CT.’
Our second approach was to fix the number of processes
devoted to the simulation at the same number used for in
situ, and to vary the number of additional processes de-
voted to analysis. The total number of processes was then
larger than the number used for the in situ run. This ap-
proach has in mind the case that the user wishes for the
grid data to be distributed among the simulation cores in a
particular way to preserve load balance, and that one is less
concerned with the total number of processes being used.
We denote this configuration as ‘CS.’ The details of each
configuration are listed in Table . An example illustrates
the influence of load imbalance across MPI processes: if
we have , Boxes spanning the domain but only ,
processes evolving the simulation instead of ,, two of
those , process must each operate on Boxes, while
the other , processes operate on only . However, all
processes must wait for the two processes which are com-
puting Boxes. Thus, decreasing the computational re-
sources by .% increases the total run time by %.

In all simulations, we ran Nyx, Reeber, and Gimlet us-
ing pure MPI, with no OpenMP. We used version ...
of FFTW, and compiled all codes with the GNU com-
piler suite, version .., with ‘-O3’ optimization. In all
DFT calculations, we used FFTW’s default ‘plan’ flag,
FFTW_MEASURE, to determine the optimal FFTW exe-
cution strategy.

Table 1 Summary of problem configurations used for
performance analysis of post-processing implementation in
BoxLib

Grid size 5123 1,0243

Problem size 10 Mpc 20 Mpc
Resolution ∼20 kpc ∼20 kpc
Box size 643 1283

Boxes 4,096 4,096
MPI procs in situ 2,048 4,096
MPI procs (CT) 2,048 4,096
MPI simulation procs (CS) 2,048 4,096

‘CT’ denotes the total number of MPI processes used in-transit, whereas ‘CS’ is
the number of processes devoted purely to evolving the simulation, with an
additional set of processes dedicated to performing post-processing (see
Section 5.3 for a complete description of these configurations).

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 13 of 18

5.4 Results
We summarize our performance results in Figures
through . There we compare various components of the
simulation running both Reeber and Gimlet in situ and in-
transit. Specifically, we plot the total end-to-end run times
in solid lines, the time for each post-processing step (every
th time step) as dashed lines, and the time to evolve the
simulation time steps with dot-dashed lines. For visual
clarity, the in-transit runs have markers at each data point,
while the in situ lines are unmarked, as they represent a
single data point. Each data point for the post-processing
execution time is an average over iterations; the standard
deviations illustrated with error bars would be smaller
than the line thickness and are thus not indicated in either
figure. Each total run time is a single data point since each
complete configuration was run only once. The lines la-
beled ‘CT’ used a constant number of total processes, such
that, e.g., when using , total processes with sidecar
processes, the remaining , are running the simulation.
Those labeled ‘CS’ have a constant number of processes
working on the simulation alone, such that when using
 sidecar processes and additional , for evolving the
simulation, a total of , processes are running. The in
situ lines are horizontal and independent of the number of
sidecar processes; they use a fixed number of , total
processes, all of which perform both simulation and anal-
ysis. The CT and in situ configurations, therefore, always
use the same number of total processes, while the CS con-
figurations use more. We also plot with the short-dashed
purple line the total time to run the Nyx simulation with-
out any analysis, running on , processes.

The times to post-process (dashed lines in each of the
four figures) illustrate the strong scaling behavior of both
analysis codes. The interplay among the different scala-
bilities presented here - those of the analysis suite, sim-
ulation code itself, and the combination of the two - are
complex and require a nuanced interpretation. In Figure
we see that Reeber strong scales efficiently, although its
performance begins to plateau at large numbers of MPI
processes, due to the relatively small problem size (a

problem domain). We also note that Reeber running in situ
on , processes is actually slower than on or ,
processes in-transit, which is due to having too many pro-
cesses operating on too small a problem.

Figure also illustrates the relationship between the
scalability of the analysis code alone and that of the en-
tire code suite (simulation+analysis). In particular, we see
that for ≤ sidecar processes performing analysis, a sin-
gle Reeber analysis call takes longer than the intervening
simulation time steps. As a result, the strong scaling be-
havior of the complete simulation+analysis suite mirrors
that of Reeber almost exactly. However, for ≥ sidecar
processes, Reeber is equal to or faster than the simula-
tion time steps, such that the scalability of the entire code
suite begins to decouple from that of Reeber alone. This
behavior has different effects for the CS and CT in-transit
configurations. For the CS configuration, the scalability of
the code becomes asymptotically flat for ≥ sidecar pro-
cesses, because Reeber completes before the simulation
time steps are done. Any number of additional sidecar pro-
cesses above ∼ is wasted in this mode. For the CT con-
figuration, the end-to-end wall clock time begins to in-

Figure 8 Performance of Reeber running in situ and in-transit with different distributions of MPI processes on a 5123 problem. The times
indicated are wall clock seconds. We used two different in-transit configurations: once with a constant total number of 2,048 MPI processes (‘CT’),
and once with a constant number of processes (2,048) devoted to simulation (‘CS’). Time to post-processes for the CS and CT in-transit configurations
are nearly identical. The short-dashed purple line indicates the Nyx run time with 2,048 MPI processes without performing any analysis.

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 14 of 18

Figure 9 Same as Figure 8, except with Gimlet. Time to post-processes for the CS and CT in-transit configurations are nearly identical.

crease for ≥ sidecar processes, because even though
Reeber is executing faster and faster, increasing number
of sidecar processes decreases the number of simulation
processes, which slows the entire code down.

In light of this behavior, it is critical to find the config-
uration which yields the best performance for in-transit
analysis. Deviating from this configuration leads either to
wasted compute resources, or to a degradation of over-
all code performance. We note that the optimal setup for
Reeber in both the CS and CT configurations for this par-
ticular Nyx simulation - using to sidecar processes
for Reeber and the remainder for simulation - is faster than
running the entire code suite in situ. In particular, the CS
mode with , + processes is faster than the in situ
mode by ∼% (∼ s). The CT mode is especially appeal-
ing, as it uses the same number of MPI resources as the in
situ mode (, processes total), and less than the corre-
sponding CS configuration (, to , processes).

Finally, we note that even the fastest post-processing
configuration (sidecars in the ‘CS’ in-transit configu-
ration) is still about ∼% (∼ s) slower than running
Nyx with no analysis at all. We identify at least two fac-
tors which contribute to this overhead cost. Firstly, the
workload between the simulation MPI partition and the
post-processing partition is not perfectly balanced; one
is always waiting for the other. Secondly, when we run
in-transit, we do not control the physical placement of
MPI processes on the machine, whereas when running
with no analysis, all processes do the same work and are
more likely to be optimally placed together. Ideally, when
post-processing, one would gather the compute partition
as closely together as possible, and similarly for the post-
processing partition. However, this is not guaranteed to
occur, and indeed the data suggest that it indeed does not.

Gimlet’s scaling in Figure , however, is more complex.
This is because Gimlet performs a variety of tasks, cal-
culating both PDFs, which strong scale very well, and
power spectra, which do not. Specifically, while BoxLib
can decompose the problem domain into an arbitrary
block structure, the only domain decomposition strategy
which FFTW supports is to stripe along the first dimen-
sion in row-major array indexing, or the last dimension
in column-major indexing. (FAB data in BoxLib uses the
latter.) Therefore, the Nyx problem domain must be di-
vided into chunks which span the entire x-y plane. Fur-
thermore, the maximum number of chunks we can create
is the number of grid points of the domain along the z-axis
(in this case). Since FFTW allows only one MPI pro-
cess to work on each chunk, we are therefore limited to
a total of processes which can participate in the DFT
calculation; the remaining processes (, when running
in situ) are idle. This load imbalance becomes worse as the
problem size grows: if using ∼, processes to simu-
late a , grid, then ∼, cores will be idle during
the DFT calculation. This chunk decomposition problem
has inspired the development of ‘pencil’-based decomposi-
tion strategies for -D DFTs which provide better scaling
behavior (Habib et al. ; Habib et al.). If we run
Gimlet in-transit instead of in situ, however, we can ad-
dress this problem by choosing a relatively small number
of processes to participate in the DFT, leaving the rest to
continue with the simulation. Similarly to the Reeber, case,
when running with no analysis, Nyx is ∼% faster than
the best post-processing configuration (processes run-
ning in the ‘CS’ in-transit mode). We expect this gap to be
the same because in the best CT configurations the code
execution is limited by the simulation, and is independent
of the post-processing algorithm.

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 15 of 18

The aggregate performance of Gimlet therefore repre-
sents a convolution of the scaling properties of both PDFs
and power spectra. Although the power spectrum calcula-
tion scaling behavior quickly saturates as discussed above,
we expect nearly ideal strong scaling behavior for the cal-
culation of PDFs. Therefore, when we see in Figure that
the time for analysis increases between and analy-
sis processes, this is due to the DFT calculations. In par-
ticular, when calculating the DFT of a grid on
MPI processes, each process has exactly one x-y plane of
data. The ratio of work-to-communication may be low for
such an extreme decomposition, leading to worse perfor-
mance with processes than with . Despite the jump
in analysis time between and processes, however,
the time decreases once again between and , pro-
cesses. When executing the DFT on , processes, we
leave idle, so the time for that component is likely ex-
actly the same as it was with ; in fact, the DFT calcula-
tion time will never decrease for > processes.d The de-
crease in total analysis time is instead due to the continued
strong scaling of the PDF calculations.

The relationship between the scalability of Gimlet and
the entire code suite is different than for Reeber, chiefly
because Gimlet execution takes significantly longer than
does Reeber. For almost any number of sidecar processes
in Figure , the time to execute Gimlet is longer than
the corresponding simulation time steps. (For side-
car processes the two times are roughly equivalent.) As
a result, Gimlet dominates the total code execution time,
and the simulation+analysis strong scaling behavior fol-
lows that of Gimlet alone almost exactly.

As was the case with Reeber, we see in Figure that some
CS and CT configurations lead to faster end-to-end run
times than in situ. Coincidentally, the threshold at which
CT and CS runs become faster is between and side-
car processes, the same as Reeber. When using sidecar
processes, the CS configuration is ∼% faster than the
in situ run, significantly larger than the % speedup seen
with the CS mode when running Reeber. These values are
functions both of the scalability of the analysis codes being
used, as well as the total time they take to execute. The key
point is that for both analysis codes, one can construct an
in-transit MPI configuration which is significantly faster
than running in situ.

Figures and show results for the same analyses per-
formed on a larger , grid. When running with no
analysis, we executed the code on , processes. In these
tests we increased the number of MPI processes used in
the in situ and CT in-transit configurations from ,
to ,, and the CS configuration used up to , to-
tal processes. The scaling behavior for Reeber running in
all three modes is similar to that of the problem il-
lustrated in Figure . When � processes are devoted to
Reeber, it becomes faster than the time steps of simula-
tion, and the overall performance of the code plateaus, be-
ing bound by the simulation and not by post-processing.
Gimlet running on the larger , problem also scales
similarly to that of the problem shown in Figure .
The characteristic jump in post-processing wall clock time
when going from to , processes running Gimlet is
due to the slowdown of FFTW when decreasing the num-
ber of x-y chunks from per process to . (In Figure the
jump occurred when going from to processes.)

Figure 10 Same as Figure 8, except with Reeber running on the 1,0243 problem. The short-dashed purple line indicates the Nyx run time with
4,096 MPI processes without performing any analysis.

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 16 of 18

Figure 11 Same as Figure 9, except with Gimlet running on the 1,0243 problem.

Because the FFTW scales poorly, we also find, as in the
smaller run, that most in-transit configurations are faster
than running in situ since fewer processes are wasted com-
puting the DFT. Reeber’s fastest in-transit configuration -
CS with , + , processes - is ∼% faster than in
situ. Gimlet’s fastest - CS with , + - is also ∼%
faster than the corresponding run in situ.

We note also that for these larger problems the gap be-
tween the fastest post-processing configurations and the
case with no post-processing is wider than for the

problem. For the problems it was about ∼%, but
for these , problems it is now about ∼% (∼ s).
This widening is likely due to exacerbation of the ef-
fects described above, particularly that the compute and
post-processing MPI partitions are now spread even more
widely across the machine, leading to larger MPI commu-
nication costs.

6 Summary and prospects
In situ and in-transit data post-processing workflows rep-
resent a promising subset of capabilities which we believe
will be required in order to be scientifically productive on
current and future generations of computing platforms.
They avoid the constraints of limited disk capacity and
bandwidth by shifting the requisite data movement ‘up-
ward’ in the architectural hierarchy, that is, from disk to
compute node memory. One can imagine continuing this
trend to even finer levels of granularity, shifting from data
movement between compute nodes across an intercon-
nect, to movement across NUMA domains within a com-
pute node. This could be implemented in several differ-
ent ways; one would be to use ‘thread teams’ introduced
in OpenMP . (which is already widely implemented in

modern compilers) to delegate simulation and analysis
tasks within a compute node. A second approach would
be to extend the MPI implementation we have introduced
in this work to incorporate the shared memory ‘windows’
developed in MPI-.

We have demonstrated the capability of these new in situ
and in-transit capabilities in BoxLib by running two anal-
ysis codes in each of the two workflows. Although small
in number, this sample of analyses - finding halos and cal-
culation power spectra - is highly representative of post-
processing tasks performed on cosmological simulation
data. We caution, however, that the results presented in
Section . are highly problem-dependent; although we
found in-transit configurations which yield faster overall
performance than in situ for both analysis codes, the situ-
ation may be different when running simulations on larger
grids, using larger numbers of processes, running analysis
algorithms with different scaling behavior, using a differ-
ent frequency of analysis, etc. Furthermore, we highlight
the caveat that, in some situations, on-the-fly data post-
processing is not a useful tool, namely in exploratory cal-
culations, which are and will continue to be critical com-
ponents of numerical simulations. In these cases, other
techniques will be more useful, including on-disk data
compression. We anticipate, then, that a variety of tools
and techniques will be required to solve these data-centric
challenges in HPC.

Besides raw performance gains, in situ and in-transit
workflows can improve the ‘time to science’ for numerical
simulations in other ways as well. For example, by running
both simulation and analysis at the same time, one elim-
inates an extra step in the post-processing pipeline. This
reduces the chance for human error which can arise when

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 17 of 18

one must compile and run two separate codes with two
separate sets of inputs, parameters, etc.

The in situ and in-transit workflows we have discussed
are not limited purely to floating-point applications, even
though that has been our focus in this work. Another
critical component of simulation is visualization, and re-
cently both the ParaView and VisIt frameworks have im-
plemented functionality for performing visualization on
data which resides in memory (‘ParaView Catalyst’ ()
and ‘libsim’ ()).

Our implementations of in situ and in-transit post-
processing show that these types of workflows are efficient
on current supercomputing systems: the expense of data
movement via MPI in the latter workflow is, in the cases
examined here, small compared to the total time spent per-
forming simulation or analysis. Therefore, the penalty for
trading disk space for CPU-hours (both of which are lim-
ited commodities) is not severe. While we have examined
only two analysis codes in this work, in the future we will be
able to evaluate the myriad other analysis workflows which
are critical components of other BoxLib codes. Because we
have built these capabilities into BoxLib itself, rather than
into Nyx specifically, these workflows will support a wide
variety of applications. The infrastructure described here
will provide scientists working with BoxLib-based codes
in astrophysics, subsurface flow, combustion, and porous
media, an efficient way to manage and analyze the increas-
ingly large datasets generated by their simulations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BF ported the Gimlet code to run in situ and in-transit, developed part of the
in-transit framework in BoxLib, collected the performance data, and wrote the
manuscript. AA developed the idea which became the main focus of this work.
ZL assisted with collecting performance data and analyzing the results. GH and
DM developed the Reeber code and also ported it to run in situ and in-transit.
VB developed most of the in-transit framework in BoxLib. MD wrote the
scheduler used when executing analysis tasks in-transit. All authors read and
approved the final manuscript.

Author details
1Lawrence Berkeley National Laboratory, 1 Cyclotron Road M/S 59R4010A,
Berkeley, USA. 2Lawrence Berkeley National Laboratory, 1 Cyclotron Road M/S
50A3111, Berkeley, USA. 3Lawrence Berkeley National Laboratory, 1 Cyclotron
Road M/S 50B4206, Berkeley, USA. 4Lawrence Berkeley National Laboratory,
1 Cyclotron Road M/S 59R3103, Berkeley, USA. 5Lawrence Berkeley National
Laboratory, 1 Cyclotron Road M/S 59R4104, Berkeley, USA.

Acknowledgements
We thank Brian Perry for valuable discussions. We also thank the anonymous
reviewers for insightful comments which improved the quality of this work.
Most figures in this work were generated with matplotlib (Hunter 2007). This
work was in part supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. DOE under Contract
No. DE-AC02-05CH11231 to the Lawrence Berkeley National Laboratory.
ZL acknowledges the support by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by U.S. Department of Energy Office of
Advanced Scientific Computing Research and the Office of High Energy
Physics. DM and GHW acknowledge the support by the Scientific Data
Management, Analysis and Visualization at Extreme Scale program funded by

the U.S. Department of Energy Office of Advanced Scientific Computing
Research, program manager Lucy Nowell. Support for improvements to BoxLib
to support the Nyx code and others was provided through the SciDAC
FASTMath Institute. Calculations presented in this paper used resources of the
National Energy Research Scientific Computing Center (NERSC), which is
supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This work made extensive use of the NASA
Astrophysics Data System and of the astro-ph preprint archive at arXiv.org.

Endnotes
a The Amr::CoarseTimeStep() function is the ‘outermost loop’ in

the time-stepping algorithm which uses subcycling, i.e., the coarsest
grids take the largest time steps (since they have the most lenient CFL
condition), and the refined grids must take smaller time steps to satisfy
their stricter CFL conditions. The procedure is hierarchical; each grid may
take many more time steps than its coarser ‘neighbor,’ but ultimately all
grids must synchronize at the end of the large time step taken by the
coarsest level. If subcycling is disabled, then all grids, regardless of their
level of refinement, take the same time step together. In the case of
Lyman-α simulations, we do not use AMR, and so there is only one time
step for all grids in each call to Amr::CoarseTimeStep(). The
subcycling procedure in Nyx simulations which do use AMR is discussed
in Almgren et al. (2013).

b In the following text we refer to this simply as a ‘10-component grid.’
c In production runs, one may wish to execute both analysis codes in a

single simulation, but for the purposes of this performance study, we do
not consider this case, as it obscures the performance behavior we seek
to study.

d For simulations in which the number of MPI processes calling FFTW3 is
equal to or larger than the number of available chunks, we could select
an arbitrarily smaller number of processes to perform the FFTW3 call,
since it seems that using the maximum possible number of chunks and
MPI processes does not lead to the fastest performance of the DFT.
However, the optimal number of processes will likely be
problem-dependent.

Received: 8 May 2016 Accepted: 17 August 2016

References
Agranovsky, A, et al.: Improved post hoc flow analysis via Lagrangian

representations. In: 2014 IEEE 4th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 67-75 (2014). doi:10.1109/LDAV.2014.7013206

Almgren, AS, et al.: CASTRO: a new compressible astrophysical solver.
I. Hydrodynamics and self-gravity. Astrophys. J. 715(2), 1221-1238 (2010).
http://stacks.iop.org/0004-637X/715/i=2/a=1221

Almgren, AS, et al.: Nyx: a massively parallel AMR code for computational
cosmology. Astrophys. J. 765(1), 39 (2013).
http://stacks.iop.org/0004-637X/765/i=1/a=39

Anderson, L, et al.: The clustering of galaxies in the SDSS-III baryon oscillation
spectroscopic survey: baryon acoustic oscillations in the data releases 10
and 11 galaxy samples. Mon. Not. R. Astron. Soc. 441(1), 24-62 (2014).
doi:10.1093/mnras/stu523

Bennett, JC, et al.: Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis. In: SC ’12 Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, pp. 49:1-49:9. IEEE Comput. Soc., Los Alamitos
(2012). http://dl.acm.org/citation.cfm?id=2388996.2389063

Bleuler, A, et al.: Comput. Astrophys. Cosmol. 2(1), 5 (2015).
doi:10.1186/s40668-015-0009-7

BoxLib (2016). https://ccse.lbl.gov/BoxLib/index.html
Bryan, GL, Norman, ML, Stone, JM, Cen, R, Ostriker, JP: A piecewise parabolic

method for cosmological hydrodynamics. Comput. Phys. Commun. 89,
149-168 (1995). doi:10.1016/0010-4655(94)00191-4

Colella, P: Multidimensional upwind methods for hyperbolic conservation laws.
J. Comput. Phys. 87(1), 171-200 (1990).
doi:10.1016/0021-9991(90)90233-Q

Colella, P, Glaz, HM: Efficient solution algorithms for the Riemann problem for
real gases. J. Comput. Phys. 59(2), 264-289 (1985).
doi:10.1016/0021-9991(85)90146-9

http://arXiv.org
http://dx.doi.org/10.1109/LDAV.2014.7013206
http://stacks.iop.org/0004-637X/715/i=2/a=1221
http://stacks.iop.org/0004-637X/765/i=1/a=39
http://dx.doi.org/10.1093/mnras/stu523
http://dl.acm.org/citation.cfm?id=2388996.2389063
http://dx.doi.org/10.1186/s40668-015-0009-7
https://ccse.lbl.gov/BoxLib/index.html
http://dx.doi.org/10.1016/0010-4655(94)00191-4
http://dx.doi.org/10.1016/0021-9991(90)90233-Q
http://dx.doi.org/10.1016/0021-9991(85)90146-9

Friesen et al. Computational Astrophysics and Cosmology (2016) 3:4 Page 18 of 18

Davis, M, et al.: The evolution of large-scale structure in a universe dominated
by cold dark matter. Astrophys. J. 292, 371-394 (1985). doi:10.1086/163168

Frenk, CS, White, SDM, Bode, P, Bond, JR, Bryan, GL, Cen, R, Couchman, HMP,
Evrard, AE, Gnedin, N, Jenkins, A, Khokhlov, AM, Klypin, A, Navarro, JF,
Norman, ML, Ostriker, JP, Owen, JM, Pearce, FR, Pen, UL, Steinmetz, M,
Thomas, PA, Villumsen, JV, Wadsley, JW, Warren, MS, Xu, G, Yepes, G: The
Santa Barbara cluster comparison project: a comparison of cosmological
hydrodynamics solutions. Astrophys. J. 525, 554-582 (1999).
doi:10.1086/307908

Frigo, M, Johnson, S: The design and implementation of FFTW3. Proc. IEEE
93(2), 216-231 (2005). doi:10.1109/JPROC.2004.840301

Habib, S, et al.: The universe at extreme scale: multi-petaflop sky simulation on
the BG/Q (2012). arXiv:1211.4864

Habib, S, et al.: HACC: simulating sky surveys on state-of-the-art
supercomputing architectures. New Astron. 42, 49-65 (2016).
doi:10.1016/j.newast.2015.06.003

Haardt, F, Madau, P: Radiative transfer in a clumpy universe. IV. New synthesis
models of the cosmic UV/X-ray background. Astrophys. J. 746, 125 (2012).
doi:10.1088/0004-637X/746/2/125

Heitmann, K, et al.: Large-scale simulations of sky surveys. Comput. Sci. Eng.
16(5), 14-23 (2014). doi:10.1109/MCSE.2014.49

Heitmann, K, et al.: The Q continuum simulation: harnessing the power of GPU
accelerated supercomputers. Astrophys. J. 219(2), Suppl., 34 (2015).
http://stacks.iop.org/0067-0049/219/i=2/a=34

Hockney, RW, Eastwood, JW: Computer Simulation Using Particles. CRC Press,
Boca Raton (1988)

Hunter, JD: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),
90-95 (2007). doi:10.1109/MCSE.2007.55

Knebe, A, et al.: Structure finding in cosmological simulations: the state of
affairs. Mon. Not. R. Astron. Soc. 435(2), 1618-1658 (2013).
doi:10.1093/mnras/stt1403

Lukić, Z, et al.: The Lyman α forest in optically thin hydrodynamical simulations.
Mon. Not. R. Astron. Soc. 446(4), 3697-3724 (2015).
doi:10.1093/mnras/stu2377

Lukić, Z, Reed, D, Habib, S, Heitmann, K: The structure of halos: implications for
group and cluster cosmology. Astrophys. J. 692, 217-228 (2009).
doi:10.1088/0004-637X/692/1/217

Mihalas, D: Stellar Atmospheres, 2nd edn. Freeman, New York (1978)
Mo, H, van den Bosch, FC, White, S: Galaxy Formation and Evolution.

Cambridge University Press, Cambridge (2010)
Morozov, D, et al.: IsoFind: Halo finding using topological persistence (in

preparation)
Morozov, D, Weber, GH: Distributed merge trees. In: PPoPP ’13: Proceedings of

the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 93-102. ACM, New York (2013).
doi:10.1145/2442516.2442526

Morozov, D, Weber, GH: Distributed contour trees. In: Bremer, PT, Hotz, I,
Pascucci, V, Peikert, R (eds.) Topological Methods in Data Analysis and
Visualization III, pp. 89-102. Springer, Berlin (2014)

Nouanesengsy, B, et al.: ADR visualization: a generalized framework for ranking
large-scale scientific data using analysis-driven refinement. In: 2014 IEEE
4th Symposium on Large Data Analysis and Visualization (LDAV),
pp. 43-50 (2014). doi:10.1109/LDAV.2014.7013203

Palanque-Delabrouille, N, et al.: The one-dimensional Lyα forest power
spectrum from BOSS. Astron. Astrophys. 559, A85 (2013).
doi:10.1051/0004-6361/201322130

ParaView catalyst for in situ analysis (2016). http://www.paraview.org/in-situ/
Planck Collaboration, et al.: Planck 2013 results. XVI. Cosmological parameters.

Astron. Astrophys. 571, A16 (2014). doi:10.1051/0004-6361/201321591
Press, WH, Schechter, P: Formation of galaxies and clusters of galaxies by

self-similar gravitational condensation. Astrophys. J. 187, 425-438 (1974).
doi:10.1086/152650

Röpke, FK, et al.: Type Ia supernova diversity in three-dimensional models.
Astron. Astrophys. 453(1), 203-217 (2006).
doi:10.1051/0004-6361:20053430

Ross, RB, et al.: Visualization and parallel I/O at extreme scale. J. Phys. Conf. Ser.
125(1), 012099 (2008). http://stacks.iop.org/1742-6596/125/i=1/a=012099

Sewell, C, et al.: Large-scale compute-intensive analysis via a combined in-situ
and co-scheduling workflow approach. In: SC ’15 Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 50:1-50:11. ACM, New York (2015).
doi:10.1145/2807591.2807663

Srisawat, C, et al.: Sussing merger trees: the merger trees comparison project.
Mon. Not. R. Astron. Soc. 436(1), 150-162 (2013).
doi:10.1093/mnras/stt1545

Thielemann, FK, Nomoto, K, Yokoi, K: Explosive nucleosynthesis in carbon
deflagration models of type I supernovae. Astron. Astrophys. 158, 17-33
(1986)

Travaglio, C, et al.: Nucleosynthesis in multi-dimensional SN Ia explosions.
Astron. Astrophys. 425(3), 1029-1040 (2004).
doi:10.1051/0004-6361:20041108

Viel, M, et al.: Warm dark matter as a solution to the small scale crisis: new
constraints from high redshift Lyman-α forest data. Phys. Rev. D 88(4),
043502 (2013). doi:10.1103/PhysRevD.88.043502

VisIt tutorial in situ (2016). http://www.visitusers.org/index.php?title=VisIt-
tutorial-in-situ

Williams, S, Waterman, A, Patterson, D: Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM 52(4),
65-76 (2009). doi:10.1145/1498765.1498785

http://dx.doi.org/10.1086/163168
http://dx.doi.org/10.1086/307908
http://dx.doi.org/10.1109/JPROC.2004.840301
http://arxiv.org/abs/arXiv:1211.4864
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://dx.doi.org/10.1088/0004-637X/746/2/125
http://dx.doi.org/10.1109/MCSE.2014.49
http://stacks.iop.org/0067-0049/219/i=2/a=34
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/stt1403
http://dx.doi.org/10.1093/mnras/stu2377
http://dx.doi.org/10.1088/0004-637X/692/1/217
http://dx.doi.org/10.1145/2442516.2442526
http://dx.doi.org/10.1109/LDAV.2014.7013203
http://dx.doi.org/10.1051/0004-6361/201322130
http://www.paraview.org/in-situ/
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1051/0004-6361:20053430
http://stacks.iop.org/1742-6596/125/i=1/a=012099
http://dx.doi.org/10.1145/2807591.2807663
http://dx.doi.org/10.1093/mnras/stt1545
http://dx.doi.org/10.1051/0004-6361:20041108
http://dx.doi.org/10.1103/PhysRevD.88.043502
http://www.visitusers.org/index.php?title=VisIt-tutorial-in-situ
http://www.visitusers.org/index.php?title=VisIt-tutorial-in-situ
http://dx.doi.org/10.1145/1498765.1498785

	In situ and in-transit analysis of cosmological simulations
	Abstract
	Keywords

	Introduction
	Cosmological simulations
	Formalism
	Simulation data and post-processing

	In situ vs. in-transit
	In situ
	In-transit
	Task scheduling

	Cosmological simulation analysis tools
	Reeber
	Gimlet

	Performance
	Lustre ﬁle write performance
	In-transit MPI performance
	Problem setup
	Results

	Summary and prospects
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Endnotes
	References

