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Abstract

In this thesis we explore and extend the theory of persistent homology, which captures
topological features of a function by pairing its critical values. The result is represented
by a collection of points in the extended plane called persistence diagram.

We start with the question of ridding the function of topological noise as suggested by
its persistence diagram. We give an algorithm for hierarchically finding such ε-simplifica-
tions on 2-manifolds as well as answer the question of when it is impossible to simplify a
function in higher dimensions.

We continue by examining time-varying functions. The original algorithm computes
the persistence pairing from an ordering of the simplices in a triangulation and takes worst-
case time cubic in the number of simplices. We describe how to maintain the pairing in lin-
ear time per transposition of consecutive simplices. A side effect of the update algorithm is
an elementary proof of the stability of persistence diagrams. We introduce a parametrized
family of persistence diagrams called persistence vineyards and illustrate the concept with
a vineyard describing a folding of a small peptide. We also base a simple algorithm to
compute the rank invariant of a collection of functions on the update procedure.

Guided by the desire to reconstruct stratified spaces from noisy samples, we use the
vineyard of the distance function restricted to a 1-parameter family of neighborhoods of a
point to assess the local homology of a sampled stratified space at that point. We prove the
correctness of this assessment under the assumption of a sufficiently dense sample. We
also give an algorithm that constructs the vineyard and makes the local assessment in time
at most cubic in the size of the Delaunay triangulation of the point sample.

Finally, to refine the measurement of local homology the thesis extends the notion of
persistent homology to sequences of kernels, images, and cokernels of maps induced by
inclusions in a filtration of pairs of spaces. Specifically, we note that persistence in this
context is well defined, we prove that the persistence diagrams are stable, and we explain
how to compute them. Additionally, we use image persistence to cope with functions on
noisy domains.
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Chapter 1

Introduction

We are surrounded by functions. A great number of physical phenomena can be de-
scribed by real-valued functions. There is a constant drive within the scientific community
to make ever more elaborate and precise measurements that produce an abundance of data
that is at least as difficult to analyze as it is to obtain.

For some phenomena the function manifests itself. For instance while studying inter-
nal combustion engine, one may record temperature or pressure at sample points in the
combustion chamber. Using MRI for medical imaging produces a volume of measure-
ments that represent density of the biological material. Measuring the height of the terrain
at sample points on the planet results in a height function on a sphere.

Perhaps even more interesting than functions that we see directly are those functions
that one constructs artificially to help interpret the data. An example that we revisit several
times in this thesis is the distance function.

The problem of reconstructing a shape from a nearby point sample has received a lot
of attention in the computational geometry community. Suppose that there is a space X
which we do not know, typically a subset of Rn, and a point sample U that is close to X. By
close we mean that the Hausdorff distance between the space and the sample is small. The
reconstruction problem asks for a spaceK, typically a triangulation with vertices in U , that
resembles X geometrically or topologically. The motivating application in computational
geometry has been the need to reconstruct surfaces from point samples collected by ever
more accurate and abundant in data laser scanners.

Recently the high-dimensional version of the problem attracted interest of the machine
learning community. The key insight has been the recognition that one can interpret data
as lying near some low-dimensional space embedded in higher dimensions. If one can re-
cover this hypothetical space, such view can lead to a better understanding of the relation-
ship between the data points if one measures geodesic distances along the low-dimensional
space rather than the distances in the ambient space; see [77] for more details. This insight
can be used to improve learning algorithms.

Short of reconstructing the space we may ask for its characteristics. One such charac-
teristic is a topological invariant called homology. It keeps track of components, tunnels,
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voids of the space as well as their high-dimensional counter-parts. A number of techniques
have been proposed for learning homology [5, 17, 22, 23, 25, 76, 65]. The best example of
practical advantage of knowing homology of the space is the work of Carlsson et al. [17]
where the authors discover that at a certain scale the space describing the distribution of
patches of natural images resembles a Klein bottle. This realization can be used to develop
better image compressions techniques.

While a number of approaches to the reconstruction problem have been explored by
the machine learning community, most of the above homology learning methods as well
most surface reconstruction techniques in computational geometry [3, 33, 36] reduce to
studying the distance function dU : Rn → R which is defined on the ambient space of
the data by measuring the distance at every point to the closest point in the data set. The
resulting function provides a deep view into the shape of the data set, and we discuss it
further in the later chapters of this thesis.

Persistence. It is a formidable challenge to analyze the ever-growing data sets. Many
techniques have been devised in fields ranging from statistics to scientific visualization.
This thesis comes out of the study of the recently introduced [39] theory of persistent
homology; see [37] for a survey. By pairing critical points that are responsible for creation
and destruction of topological features, persistence represents a function as a collection
of paired values. Each pair symbolizes a feature, and the difference between the values
represents the significance of the feature.

The idea of persistence may be the easiest to introduce as it applies to terrains1. Given
a real-valued function we consider all those points in the domain whose value is below
the given threshold, i.e. the sublevel set of the function. As we vary the threshold, the
connectivity of the sublevel set changes. For simplicity, in the Introduction we restrict
our attention only to the connectivity of components; we delay the formal definition of
persistence in all dimensions until the next chapter.

On the left of Figure 1.1 we have a height function f : R2 → R defined on the plane
with minima at points A,B,D, saddles at points C,E,G, and a maximum at F . As we
sweep the threshold from negative infinity to positive infinity, the new components in
the sublevel set appear: once we pass the value at D, there are three components in the
sublevel set. The components created at B and D merge into one as we pass the value
at E. We say that the younger component, created at D, dies, and the older component
carries on. As we pass the value at saddle G, the surviving component of B merges with
the older component of A, and dies. We pair the values at which a component appears and
subsequently dies, and get pairs (f(D), f(E)), (f(B), f(G)), and (f(A),∞), with the last
one signifying that the component of A lives forever. We record the pairs as points in the
extended plane R̄2 with birth on the horizontal and death on the vertical axes. We call
the collection persistence diagram, shown on the right of Figure 1.1. Since birth happens
before death, all the points appear above the diagonal.

The difference between death and birth of a component is its persistence; in the di-

1 A slightly restricted version of this application, called “topographic prominence”, is the earliest incarna-
tion of persistence known to the author.
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Figure 1.1: Left: terrain whose height is an example of a real-valued function. Right: its
0-dimensional persistence diagram.

agram it is the L1 distance of the point to the diagonal. Location of the point along the
diagonal is its scale, the average of the function values responsible for it. One can view
each point as a feature of the function and the persistence of the point as the importance
of the feature.

In our example whether the little crater on top of the mountain on the left is a real
feature — and the mountain is really a volcano — depends on our application as well as
the quality of the data that we have. Some of the points in the persistence diagram may
represent noise, some real features. Regardless of which is which persistence diagram does
not make a judgment call on what is important. There lies its strength: persistence gives
an omniscalar description of function’s features. Empowered by the complete picture, the
user is able to decide what matters.

When used for the homology learning problem in conjunction with the distance func-
tion, the omniscalar nature of persistence translates into techniques that do not require the
user to make assumptions about the amount of noise in the data [25]. Instead they present
her with a simultaneous view across all scales, which contrasts, for example, the methods
of [65] where picking the presumed noise threshold is among the first steps of the algo-
rithm. Moreover, using persistence not only does not require one to inject assumptions
about a fixed noise level, it tells what amounts of noise are impossible for a given point
sample under very mild assumptions on the conditioning of the space. We explain this
observation in detail in Section 2.4.

The concept of persistence can be seen embedded within the theory of spectral se-
quences [61] but has not been treated as a concept in its own right until [39]. The latter
paper also describes a fast algorithm for modulo 2 homology and demonstrates that per-
sistence is relevant to applications, including the study of protein structure. The concept
and the algorithm have been extended to homology over fields in [82]. The stability of
persistence diagrams has been established in [25], opening the concept up to additional
applications, including the inference of homology from point clouds, see also [76], the
comparison of shapes, see also [16], and the analysis of discrete curvature measures, see
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[24]. Persistence has been applied to the analysis of image patch data [17]. Recent results
on the Lp-stability of persistence diagrams of Lipschitz functions [27] have provided in-
sight into periodic gene expression [32]. Independently, the same ideas were developed
from a somewhat different angle and restricted to zero-homology by a group of researchers
in Italy [15, 44]. Using different terminology, they introduced persistence diagrams and
proved stability, albeit only for the evolution of components in the sublevel sets [4]. The
ideas of persistence also emerged in the work of Robins [74].

Contributions. In this thesis we explore several applications of persistence, and in do-
ing so extend the theory. Several of the definitions that we introduce along the way are
interesting in their own right.

Cohen-Steiner, Edelsbrunner, and Harer [25] express the following view of persis-
tence: “importance [of a feature] can be quantified in terms of the amount of change
necessary to eliminate a feature”. While this view is slightly misleading, as Section 3.5
of this thesis shows, it gives a helpful intuition about persistence diagrams. It also raises
a natural question of simplifying a persistence diagram by eliminating features with small
persistence, which we examine in Chapter 3. We define what an ε-simplification of a
function is and investigate when it is and is not possible to find such a simplification.

Then we study what happens to persistence diagrams if the underlying function varies.
Time-varying data is of great interest in practice (since indeed most physical phenomena
are time-dependent processes). We introduce persistence vineyards which keep track of
how persistence diagrams change as the functions they represent change continuously. A
sample vineyard in Chapter 4 captures information about folding of a small peptide.

In subsequent chapters we embrace and explore the omniscalar paradigm of topologi-
cal data analysis. To guide us we address the homology learning problem by studying the
distance function. However, instead of trying to learn the global structure of the sampled
space, we investigate the question of recovering its local structure at a point. The reasons
for this are manifold including determining whether the space is.

In machine learning, the subfield that studies topological spaces is commonly dubbed
manifold learning, which discloses an assumption that the spaces under investigation are
high-dimensional surfaces. It is not difficult to come up with an example that does match
this expectation, e.g., see the pinched torus in Figure 5.1. There is no reason to expect
such more complicated spaces to not occur in practice. Moreover, if singularities in the
space exist, one may expect them to represent significant behavior in data making their
discovery desirable.

The question of learning the local structure is inherently multi-parameter since there
is an interplay between what we mean by “local” and the scale of the noise. To preserve
our focus on the omniscalar paradigm, we study a local restriction of the distance function
as we vary our definition of local. The result is an (α|r)-vineyard from which one can
infer the local homology of a sampled space in Rn. In the course of this study we discover
the significance of resolving radius which we introduce in Section 5.4, and which is
interesting in its own right.

Finally, we refine the notion of persistence to cope with a particular setting for pairs

4



of functions. We use it in Chapter 6 to get a cleaner representation for local homology as
well as to cope with the problem of noise in the domain rather than only in the function
values.
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Chapter 2

Basics

In this thesis we study topological spaces, which are sets given with collections of their
open subsets. Often the spaces we consider are subsets of Rn, in which case their topology
is induced by Rn, i.e. a subset of the space is open if it is an intersection of an open subset
of Rn with the given space. The strongest notion of equivalence that we use is that of
homeomorphism which is a continuous bijection between two spaces whose inverse is
also continuous. However, homeomorphism type of a space is undecidable [58], while we
are interested in efficient algorithms to study topological spaces. We therefore restrict our
attention to a much weaker, but easily computable topological invariant called homology.

2.1 Complexes and homology
We review simplicial complexes, homology groups, and briefly mention concepts from
homotopy theory. We refer the reader to Hatcher [52] or Munkres [64] for a thorough
study of these subjects.

Complexes. We distinguish between abstract and geometric simplicial complexes. Given
a collection of sets, we say that a subset of any p+ 1 of them is an abstract p-dimensional
simplex, or abstract p-simplex for short. Any subset of size q + 1 of the p-simplex is
its q-dimensional face. A geometric p-simplex is the convex hull of p + 1 affinely in-
dependent points. The convex hull of any subset of those points is its face. If τ is a
face of σ, then σ is a coface of τ . A simplicial complex, abstract or geometric, is the
collection of faces of a finite number of simplices, any two of which are either disjoint
or intersect in a common face. If K is a simplicial complex in Rn, then its underlying
space is the union of its simplices together with the subspace topology inherited from
Rn. Any abstract simplicial complex with n simplices can be realized in Rn (for example
as a subset of the standard simplex 4n, which is the convex hull of points with coordi-
nates (0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)). Therefore we can always
talk about the underlying space of a simplicial complex implying the underlying space of
some realization if the simplicial complex is abstract.

We consider a subsetL of a simplicial complexK, not necessarily a simplicial complex
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itself. We define its star as the set of simplices in K that have a simplex of L as a face. Its
link is the set of faces of simplices in the star that do not also belong to the star:

St L = {σ ∈ K | ∃ η ∈ L, η ⊆ σ},
Lk L = {τ ∈ K | τ ⊆ σ ∈ St L, τ 6∈ St L}.

We call 0-simplices vertices, 1-simplex edges, 2-simplices triangles, and denote the set of
vertices of a simplicial complex K with VertK.

Given a simplicial complex K, its first barycentric subdivision, SdK, is an abstract
simplicial complex with a vertex σ̂ for each simplex σ in K and a simplex τ for each
increasing chain in the face relation of the simplices in K.

The subcomplex of K that consists of all the simplices in K up to dimension p is the
p-dimensional skeleton of K, or p-skeleton for short.

Homology. We consider a topological space X and a triangulation K of X, i.e. a simpli-
cial complex whose underlying space is homeomorphic to X. In simplicial homology, a
p-chain is a formal sum of p-simplices inK. We use modulo 2 arithmetic implying the co-
efficients in the formal sum are 0 or 1. We can therefore think of the p-chains as subsets of
all p-simplices, namely the ones with coefficient 1. Adding chains modulo 2, we obtain the
group of p-chains, denoted Cp(K). It is easy to see that Cp(K) is abelian. The boundary
of a p-simplex is the set of its (p− 1)-dimensional faces, and the boundary of a p-chain is
the sum of the boundaries of its simplices. Denoting the boundary map by ∂p, we observe
that it is a homomorphism from Cp(K) to Cp−1(K). Noting that ∂p∂p+1 = 0, we take the
sequence of groups together with the homomorphisms to obtain a chain complex,

. . .
∂p+2→ Cp+1

∂p+1→ Cp
∂p→ Cp−1

∂p−1→ . . .
∂1→ C0

∂0→ 0.

The group of p-cycles is the kernel of the p-th boundary homomorphism, Zp(K) = ker ∂p,
and the group of p-boundaries is the image of the (p + 1)-st boundary homomorphism,
Bp(K) = im ∂p+1. Since ∂p∂p+1 = 0, Bp(K) is a subgroup of Zp(K). The p-th homology
group of K is the quotient of the two, Hp(K) = Zp(K)/Bp(K). The p-th Betti number of
K is the rank of its p-th homology group, βp(K) = rank Hp(K). Homology groups and
therefore Betti numbers are invariants of the topological space X, and do not depend on
the choice of the triangulation K [52, 64].

Assuming an ordering of the (p−1)-simplices and of the p-simplices, we can interpret
the linear operator ∂p as an incidence matrix Dp where Dp[i, j] = 1 if the i-th (p − 1)-
simplex is a face of the j-th p-simplex, and Dp[i, j] = 0 otherwise. The boundary of a
p-chain can be obtained by multiplication of the corresponding vector with the incidence
matrix, ∂p(cp) = Dpcp. We observe that the null space of matrix Dp is exactly the kernel
of map ∂p, i.e. the cycle group Zp, while the column span of Dp is the image of map ∂p,
i.e. the boundary group Bp−1. Therefore,

βp = rank Zp − rank Bp = rank nullspace(Dp)− rank colspan(Dp+1).
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A classical algorithm computes the Betti numbers of K by reducing its incidence matrices
to Smith normal form to obtain ranks of their null spaces and column spans. It uses row
and column operations to zero out all entries except along an initial portion of the diagonal,
as shown in Figure 2.1. In the normal form of Dp, the zero columns form a basis of the
p-cycles and the non-zero rows form a basis of the (p − 1)-boundaries. We can thus read
the ranks of the cycle and the boundary groups off the normal forms and get βp for each p.

1

1

1 . . . 0
rank Bp−1

rank Zp

Figure 2.1: Smith normal form of the incidence matrix between (p − 1)-simplices and
p-simplices.

It is often advantageous to talk about reduced Betti numbers which can be defined by
modifying the boundary homomorphism ∂0 to map into Z/2Z rather than 0 with ∂0(v) = 1
for each vertex, and defining a map ∂−1 : Z/2Z → 0 to be the zero map. We call the
resulting homology groups reduced, denoted H̃p(K); their ranks are the reduced Betti
numbers, β̃p(K) = rank H̃p(K). They are equal to the ordinary Betti numbers except for
β̃0(K) = β0(K)− 1 if the space K is non-empty, and β̃−1(K) = 1 if the space is empty.

It is convenient to collect the homology groups for all dimensions. We write H(X) =
(. . . ,Hp(X),Hp+1(X), . . .) and H̃(X) = (. . . , H̃p(X), H̃p+1(X), . . .). Similarly, we define
a vector of (reduced) Betti numbers, β(X) = (. . . , βp(X), βp+1(X), . . .) and β̃(X) =
(. . . , β̃p(X), β̃p+1(X), . . .). Of course, only the groups for p between 0 and the dimen-
sion of X are possibly non-trivial. To simplify language, we often ignore the difference
between a single homology group and the entire series.

Let X be a subspace of X′, another topological space. Inclusion X ⊆ X′ induces a
homomorphism Hp(X) → Hp(X′) between homology groups of the same dimension. As
an example consider the space X in Figure 2.2. It has a single hole marked by the dashed
circle that surrounds it. This circle generates a non-trivial class γ ∈ H1(X). In contrast,
the same circle bounds in X′ which implies that the homomorphic image of γ in H1(X′)
is 0. As with groups we combine the homomorphisms to form a series that maps H(X) to
H(X′) component-wise.

We also consider pairs of topological spaces X0 ⊆ X. We define relative homology
groups, Hp(X,X0), to consist of classes generated by relative cycles, that is, chains in
X whose boundary is either empty or contained in X0. As before we get one group for
each dimension p and we write H(X,X0) for the series. For example in Figure 2.2, the
dimension 1 relative homology group of the pair (X,X0) is generated by two classes, the
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X′0

X X0

X′

Figure 2.2: The dimension 1 homology groups of X (dashed closed curve) and of X′
(dotted closed curves) have rank 1 and 2 but the map induced by inclusion has only rank 0.
The relative homology groups of (X,X0) (dashed curves) and of (X′,X′0) (dotted curves)
both have rank 2 but the map induced by inclusion of pairs has only rank 1.

absolute class from before and the relative class generated by the dashed curve whose
ends lie in X0. Let X′0 ⊆ X′ be another pair of topological spaces. We write (X,X0) ⊆
(X′,X′0) if X ⊆ X′ and X0 ⊆ X′0. In this case, inclusion induces again a homomorphism
Hp(X,X0) → Hp(X′,X′0). In the example in Figure 2.2, the image of the absolute class
is zero, as before, and the image of the relative class is another relative class of the pair
(X′,X′0), namely the one generated by the dotted cycle surrounding the hole on the right in
X′. As before, we simplify notation by considering the series of homomorphisms mapping
H(X,X0) to H(X′,X′0) component-wise.

Homotopy. While we do not study it in this thesis, we make use of homotopy theory.
Even though it is computationally intractable [58], homotopy theory is useful to us since
it is stronger than homology. In the rest of this section we recall basic definitions and
statements from homotopy theory, and make the former statement precise.

Given two functions f0 : X → Y and f1 : X → Y, we say that they are homotopic
if there exists a continuous function F : X × [0, 1] → Y such that F (x, 0) = f0(x) and
F (x, 1) = f1(x). We denote this by f ' g.

Two topological spaces X and Y are said to be homotopy equivalent if there exist
functions f : X → Y and g : Y → X such that their compositions are homotopic to the
respective identities; f ◦ g ' idY, g ◦ f ' idX. In this case we say that the functions f
and g are each others’ homotopy inverses. A homotopy equivalence f : X → Y treated
as a map on chain groups of the spaces induces an isomorphism f ∗ : H(X) → H(Y) on
the homology groups of the spaces. As a result, spaces that are homotopy equivalent have
isomorphic homology groups. The converse is not true in general.

A helpful way to show that a subset of a space is homotopy equivalent to it is by
constructing the following map. Deformation retraction from space X to its subset Y ⊆ X
is a homotopy r : X× [0, 1]→ Y such that r(x, 0) = x, r(·, 1) ⊆ Y, and r(y, ·) = y for all
y ∈ Y. It follows immediately that r(x, 1) : X→ Y is a homotopy inverse of the inclusion
idY : Y→ X.

Homotopy theory studies groups formed by maps from spheres to the topological
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space, γ : Sp → X. The group operation γ1 + γ2 is given by collapsing the equator
Sp−1 of the sphere Sp to a point and applying γ1 to the top and γ2 to the bottom sphere
of the resulting dumbbell. In Section 2.3 we make use of homotopy groups by showing
that a particular map is a homotopy equivalence since it induces an isomorphism on the
homotopy groups of a CW-complex. This result is known as Whitehead’s theorem. See
[52] for the formal statement and proof of this theorem on page 346, as well as detailed
definitions of all of the above concepts.

A topological space is contractible if it is homotopy equivalent to a point. In this case,
all Betti numbers vanish, except for β0 which is 1.

2.2 Persistence
A concept that is central to this thesis is persistence which can be defined for any sequence
of vector spaces. Suppose {Vα} is a sequence of vector spaces with homomorphisms fβα :
Vα → Vβ connecting every pair with α ≤ β, with the property that any homomorphism
can be decomposed fβα = fββ′ ◦ fβ

′
α for any α ≤ β′ ≤ β and fαα is the identity map. We

say that a non-zero element λ ∈ Vα is born in Vα if for every α′ < α it does not belong
to the image of fαα′ . Element λ dies entering Vβ if fβ

′
α (λ) is not in the image of fβ

′

α′ for all
α′ < α < β′ < β, while fβα (λ) is in the image of fβα′ for some α′ < α. More precisely, an
entire coset is born and dies with the birth and death of a single element. We summarize
in symbols; see Figure 2.3.

Vα′
fα
α′→ Vα

fβ
′

α→ Vβ′
fβ
β′→ Vβ

λ ∈ Vα is born in Vα: λ /∈ im fαα′ for all α′ < α,
λ dies entering Vβ: fβ

′
α (λ) /∈ im fβ

′

α′ for all α′, β′ with α′ < α < β′ < β,
fβα (λ) ∈ im fβα′ for all α′ < α.

λ

Vα′ Vα Vβ′ Vβ

im fα
α′ im fβ′

α′
fα
α′−→ fβ′

α−→
fβ

β′−→

Figure 2.3: Element λ ∈ Vα is born in Vα and dies in Vβ .

Persistent homology. The most common setting for persistence, the one that started the
study of persistence in its own right is persistent homology [39, 82]. We follow the exposi-
tion in [25] in which we have a topological space X and a continuous function f : X→ R.
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The sublevel set defined by a ∈ R consists of all points with function value at most the
threshold, Xa = f−1(−∞, a]. Given a ≤ b, the inclusion between the sublevel sets,
Xa ⊆ Xb, induces a homomorphism, f ba : H(Xa) → H(Xb). For a = b this is an iso-
morphism and for a < b it may or may not be an isomorphism. A value a ∈ R is a
homological critical value of f if there is no sufficiently small ε > 0 for which fa+ε

a−ε is an
isomorphism. We assume that f is tame, that is, it has only finitely many critical values
and every sublevel set has only finite rank homology groups.

Let a1 < a2 < . . . < am be the critical values of f and consider an interleaved
sequence si−1 < ai < si for all i. This gives a sequence of spaces, X0 ⊆ X1 ⊆ . . . ⊆
Xm = X, where we simplify notation by writing Xi = Xsi , and a corresponding sequence
of homology groups connected by homomorphisms,

H(X0)→ H(X1)→ . . .→ H(Xm).

Using the above definition of persistence for vector spaces, persistent homology concerns
itself with the history of individual homology classes within this sequence. Specifically,
a class γ in H(Xi) is born at ai if it is not in the image of f ii−1 = f sisi−1

. Furthermore, if
γ is born at ai we say it dies entering aj if f j−1

i (γ) is not contained in the image of f j−1
i−1

but f ji (γ) is contained in the image of f ji−1. The images of the maps f ji are referred to as
persistent homology groups since they consist of all homology classes born at or before ai
that live beyond aj .

It is convenient to represent the fact that class γ is born at ai and dies entering aj by
drawing the point (ai, aj) in the two-dimensional plane. By collecting the points for all
p-dimensional classes we get the dimension p persistence diagram which we denote as
Dgmp(f). Since birth necessarily happens before death all points lie above the diagonal.
It is also possible that a class γ is born at ai but does not die since it represents a class
of Xm = X. In this case, we draw γ as the point (ai,∞) in the diagram. For technical
reasons that will become clear later, we consider all points on the diagonal to be part of the
persistence diagram. Similar to homology groups we get a diagram for each dimension
and we write Dgm(f) for the infinite series of diagrams; we simplify language by ignoring
the difference between a single diagram and an entire series.

Cohen-Steiner, Edelsbrunner, and Harer [26] use relative homology to augment the
above sequence of homomorphisms giving rise to persistent homology. Denoting the su-
perlevel set of a function f at threshold a by Xa = f [a,∞), equal to the set of points in X
with value at least a, and above simplifying notation Xi = Xsi , we obtain a sequence.

0 = H(X0) → H(X1) → . . . → H(Xm) = H(X)
↓

0 = H(X,X0) ← H(X,X1) ← . . . ← H(X, ∅) = H(X)

Using the definition of persistence for vector spaces, we can distinguish between three
types of pairs. There are classes born and dying going up, classes born going up and dying
coming down, and classes born and dying coming down. The authors call the resulting
persistence pairing extended persistence and referred to the three types of pairs as ordinary,
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extended, and relative. It is convenient to record the pairs as points with the value of the
sublevel or superlevel set responsible for the homology group as its birth or death value.
We get three types of subdiagrams named after the pairs: ordinary, extended, and relative
— with the first type always lying above the diagonal, and the last one always below the
diagonal.

We use the following theorem throughout this thesis to show equivalence of various
sequences of vector spaces, in particular, the ones arising in applications and the ones we
can treat algorithmically.

PERSISTENCE EQUIVALENCE THEOREM. Sequences of vector space Vα and V ′α have
the same persistence pairing iff for every index α in the sequence there is an isomorphism
jα : Vα → V ′α, and for every pair of indices α and β the following diagram commutes.

Vα Vβ

V ′α V ′β

//

��
jα

��
jβ

//

The proof of the theorem is trivial, but wordy, so we omit it. This theorem appears as
Corollary 3.1 in [82].

The persistence homology setting that is crucial for algorithmic purposes is a piece-
wise constant function f̄ : K → R defined on a simplicial complex. We say more about
where such functions come from in Sections 2.4 and 2.5, but for now we note that the
function value on a face must not exceed that on a coface. Let σ1, σ2, . . . , σm be a sequence
of the simplices in K ordered by the function value with ties broken by dimension, so that
faces always precede cofaces. Writing Ki = {σj | j ≤ i}, we call the sequence ∅ = K0 ⊂
K1 ⊂ K2 ⊂ . . . ⊂ Km = K a filtration of K if all Ki are complexes or, equivalently, the
faces of every simplex precede the simplex in the given sequence. Considering homology
groups of each complex in the filtration and the homomorphisms between them induced
by inclusion, we are again in the persistent homology setting. Edelsbrunner, Letscher, and
Zomorodian [39] give an algorithm for computing the persistence pairing of the sequence
of homology groups of a filtration in worst-case time cubic in the number of simplices.
We now recall their algorithm using its interpretation in [29].

Computation. To compute persistent homology for the sequence of complexes Ki we let
D be the m-by-m incidence matrix. We reduce D using left-to-right modulo-2 column
additions until the lowest one of every non-zero column is in a unique row. Initializing R
and V to the incidence and the identity matrices and letting lowR[i] be the row index of
the lowest one in column i of R, or 0 if the entire column is zero, we can formalize the
algorithm as follows.

R = D; V = I;
for i = 1 to m do

while ∃k < i with lowR[k] = lowR[i] 6= 0 do
add column k to column i in R as well as in V
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Equivalently, the reduced matrix is obtained by multiplying the incidence matrix from the
right with an upper-triangular matrix, R = DV , such that the map from the non-zero
columns of R to the row indices of their lowest ones is injective. As we prove in Chapter
4, R is not unique but the map is. By construction, the rows of R and V correspond to

V

=

R D

Figure 2.4: The reduced matrix equals the incidence matrix times the chain matrix. All
three are upper-triangular.

individual simplices, same as the rows of D, but the columns of R and V correspond to
chains. Specifically, column i of R stores the boundary of the chain stored in column i of
V . We call σi positive if its addition to Ki−1 gives birth to a homology class. Equivalently,
column i of V stores a cycle and column i of R is zero. Symmetrically, we call σi negative
if its addition to Ki−1 gives death to a homology class. Equivalently, column i of V stores
a chain that is not a cycle and column i ofR is non-zero. The significance of the lowest one
in this column of R is that the negative σi is paired with the positive σ`, with ` = lowR[i],
which gives birth to the class that σi kills.

PROOF. We prove correctness of the above algorithm by showing that the following two
statements are true.

1. R[i] = 0 if and only if a class is born in H(Ki);

2. lowR[j] = i if and only if a class born in H(Ki) dies entering H(Kj).

Our proof is inductive: we show that the algorithm is correct for all the complexes in the
filtration up to Kl. The claim is trivially true for K0.

For inductive step we assume that the claim is true for all l′ < l. We observe that
exactly one class is born or dies in any single complex of the filtration since only one
chain group Cp changes by one basis element, and therefore only one of the homology
groups Hp or Hp−1 changes by one basis element. Therefore, once we show that the
algorithm reports a birth or a death in complex Kl correctly, the reverse direction in the
above statements follows immediately.

If 0 = R[l] = D · V [l], then by definition column V [l] represents a cycle. Since matrix
V is upper-triangular and invertible, V [l, l] = 1, and the cycle V [l] contains simplex σl.
Therefore, V [l] represents a new class in H(Kl), furthermore the class is non-trivial since
Kl contains no cofaces of σl. This proves the first statement.

Suppose lowR[l] = i, then column R[l] represents a cycle which is born in Ki because
of the ordering of the rows. Furthermore, that cycle belongs to a trivial class in H(Kl)
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because it is by definition the boundary of the chain represented by the column V [l]. It
remains to show that a class born in H(Ki) does not die before Kl. This follows from
inductive hypothesis since if a class born in H(Ki) dies before H(Kl), then there would be
a column l′ < l with lowR[l′] = i. In this case column R[l] could be reduced further, a
contradiction.

Cubic worst case. We show that in the worst case the above algorithm performs Ω(m3)
operations. The existence of this example should be contrasted to the experimentally ob-
served sub-quadratic running time for filtrations that arise from applications.

We describe the space as well as the ordering of the simplices. Let n = b(m+ 29)/7c,
v = b(n− 1)/2c, and note that both n and v are in Ω(m). In our filtration, all vertices
appear before all edges, and all edges appear before all triangles. The indices that we
assign to the simplices are within their respective classes (e.g., edge labeled n appears
before the triangle labeled 1); some indices are negative, which is done for simplicity.

A C

B

n
− 5

n−
2

n

1

−1

−2

1

2

3

n
−

1 n
−

3

n
−

4

vertices −n + 1 . . .−1 1 . . . n 1 . . . v. . . . . . fin triangles

negative
edges

base
triangles

triangles with vertex C

1 2 3 4 5

n
n− 1

1

n− 1
n− 2
n− 4

1

n− 2
n− 3
n− 4
n− 5

1

n− 3
n− 4
n− 5
n− 6
n− 8

1 1
n− 9
n− 8
n− 7
n− 6
n− 5

n− 4

Ω(n)

Figure 2.5: Left: space for the worst case performance of the persistence algorithm. Right
top: filtration of the space. Right bottom: sparse matrix representation of the portion of
the reduced matrix corresponding to the base triangles.

Figure 2.5 illustrates the construction of our space as well as the assignment of indices.
Starting with triangle ABC, we add v vertices inside the triangle in the following manner:
we place the first vertex V1 near the middle of edge AB, the second vertex V2 near the
middle of AV1, V3 near the middle of BV2, V4 near AV2, V5 near BV3, V6 near V1V2, V7

near V1V3, and so on, moving from both ends inwards at each stage. The edges joining C
with vertices Vi are the first to appear in the filtration, each one merging its vertex Vi with
the component containing C. These edges are not important in our argument, so we do not
label them. Edge AB gets index 1, and the remaining edges are assigned indices from the
ends inwards similar to the vertices: AV1 gets n, BV1 gets n−1, AV2 gets n−2, BV3 gets
n− 3, V1V2 gets n− 4, V1V3 gets n− 5, and so on, see Figure 2.5. Similarly, the triangles
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are assigned indices from the ends inwards in stages: ABV1 gets 1, AV1V2 gets 2, BV1V3

gets 3, AV2V4 gets 4, BV3V5 gets 5, and so on. We call these triangles the base triangles.
In addition, we place n− 1 vertices above the plane of triangle ABC, one above each

edge AVi, BVj , and ViVj , and join them to those edges (Figure 2.5 depicts only two of the
n− 1 such vertices). One of the edges joining the vertex above the edge k to its endpoints
merges the component containing the endpoint of the edge k with the vertex above the
plane. We do not label this edge. The other edge gets index k− (n+ 1) which is negative.
The triangle formed gets an index larger than v, so that the triangles not in the plane of
ABC appear last in the filtration. We call them fin triangles.

Consider what happens when the above algorithm reduces the resulting incidence ma-
trix. There are two interesting parts to its execution. First, the base triangles 1 to v are
processed, their columns in matrix R build up Ω(n) ones each corresponding to edges n to
n−v, see bottom right of Figure 2.5. Second, when the fin triangles v+1 to v+n are pro-
cessed, the search for the lowest ones goes through all the columns of the base triangles,
adding columns of size Ω(n). As a result, for Ω(n) triangles we perform Ω(n) merges
each of which takes time Ω(n). It follows that the total running time is Ω(n3) = Ω(m3).

Stability. Cohen-Steiner, Edelsbrunner, and Harer [25] proved a stability result for per-
sistence diagrams that provides a jumping off point for most of this thesis. We restate
it here. Given two functions f, g : X → R, defined on some topological space X, we
define the distance between them to be the L∞-norm of their difference: ‖f − g‖∞ =
supx∈X |f(x)− g(x)|. The bottleneck distance between the persistence diagrams of f and
g is the infimum over all bijections γ : Dgmp(f) → Dgmp(g) of the supremum distance
between the corresponding points:

dB(Dgmp(f),Dgmp(g)) = inf
γ

sup
u∈Dgmp(f)

‖u− γ(u)‖∞.

For technical reasons the functions are required to be tame, and the space X triangulable.

STABILITY THEOREM. If f, g : X → R are two continuous, tame functions then for
any p ≥ 0, the bottleneck distance between their dimension p persistence diagrams is not
greater than the distance between the functions: dB(Dgmp(f),Dgmp(g)) ≤ ‖f − g‖∞.
We give an elementary, combinatorial proof of this theorem in Chapter 4.

Arbitrary maps. While filtrations of sublevel sets of real-valued functions is the most
common setting in practice, we do not have to restrict ourselves to homomorphisms be-
tween homology groups induced by inclusion. Given a sequence of spaces and arbitrary
continuous maps between every pair of them,

X1
h1→ X2

h2→ . . .
hn−1→ Xn,

we get a sequence of induced homomorphisms between the homology groups of the re-
spective spaces:

H(X1)
h∗1→ H(X2)

h∗2→ . . .
h∗n−1→ H(Xn).
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To treat this setting algorithmically we reduce it to inclusions of the following spaces. Let
X′1 = X1, and X′i+1 = X′i ∪ Xi × [0, 1] ∪ Xi+1 be the staggered mapping cylinder, where
(x, 0) ∈ Xi × {0} is identified with x ∈ Xi ⊆ X′i, while (x, 1) ∈ Xi × {1} is identified
with hi(x) ∈ Xi+1. Figure 2.6 illustrates this construction.

⊆

X′
1 X′

2

⊆

X′
3

⊆ · · · ⊆

X′
n

X1 X1 X1 X1

X2 X2 X2

X3 X3

Xn

· · ·

Figure 2.6: Inclusions of staggered mapping cylinders.

It is not difficult to verify that the persistence pairing of the sequence of homology
groups H(X′1)→ . . .→ H(X′n) with homomorphisms induced by inclusion is the same as
that of the sequence of homomorphisms

H(X1)
h∗1→ . . .

h∗n−1→ H(Xn).

Indeed, considering the following diagram

H(Xi) H(Xj)

H(X′i) H(X′j)
��

//
h∗j−1 ◦ ... ◦ h∗i

��

//

with all maps except the top horizontal one induced by inclusion, we notice that the vertical
maps are isomorphisms since X′i deformation retracts onto Xi. In addition the diagram
commutes since for any cycle λ in Xi, including it into X′i and then X′j produces a cycle
that retracts onto the image hj−1 ◦ . . . ◦ hi(λ) included into X′j . Therefore, we can
apply Persistence Equivalence Theorem.

Other fields and languages. As Zomorodian and Carlsson point out [82], it is possible to
phrase all of the above material (and by extension everything we do in this thesis) using
arbitrary fields as coefficients in chain and homology groups with very minor changes:
by adding divisions where necessary. We restrict ourselves to Z/2Z only to simplify the
exposition: there is no mathematical reason for it.
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It is also worth noting that all of the material in this thesis can be rephrased in other
terms, e.g., modules of [82]. This would be merely a translation between different lan-
guages. The language of this thesis is chosen for its simplicity. This judgment, of course,
is purely subjective and stems from habit rather than objections to other approaches.

2.3 Nerves
A combinatorial object that is very helpful in bridging the gap between functions that arise
in practice and their combinatorial representations as simplicial complexes is the nerve.
Given a collection of sets we consider an abstract simplicial complex in which a simplex
is present iff all of its sets intersect (it is trivial to verify that it is a simplicial complex). We
call such a simplicial complex the nerve of the collection of sets. A classic result called the
Nerve Lemma states that if the intersection of every subset of the sets in the collection is
contractible, the nerve of the collection is homotopy equivalent to its union [57]. We need
a stronger statement that the map between the two sets suggested by the Nerve Lemma
is a homotopy. In the remainder of this section we make this map precise, and prove the
needed theorem.

Realizing nerves. Let C be a finite collection of convex sets in Rn, write N for the nerve
of C, and let SdN be the first barycentric subdivision of the nerve. We draw SdN in Rn

by mapping each vertex σ̂ to a point f(σ̂) in the intersection of the sets that correspond to
the vertices of σ, as in Figure 2.7. Extending this map by piecewise linear interpolation to
the simplices gives a map f : || SdN || → Rn. Note that each simplex in SdN is contained
in a single set in C which implies that the image of f is contained in

⋃
C. As suggested

Figure 2.7: A collection of three convex sets in the plane and a piecewise linear drawing
of the barycentric subdivision of the nerve in which each vertex maps to a point in the
intersection of the corresponding sets.

in Figure 2.7 such a drawing does not generally exist for the nerve, which is the reason we
consider its barycentric subdivision.
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Let now γ : Sp → ⋃
C be a map of the p-dimensional sphere into the union of the

convex sets. We are interested in constructing a map µ : Sp → || SdN || whose composition
with f is homotopic to γ, f ◦ µ ' γ. For this purpose let L be a triangulation of Sp that
is sufficiently fine such that the image of every simplex is contained in a single but not
necessarily unique set in C. In other words, we map each simplex τ ∈ L to a set Cτ ∈ C
such that γ(τ) ⊆ Cτ . Since τ corresponds to a vertex τ̂ in the barycentric subdivision of
L and Cτ is also a vertex in the nerve this gives a map from the vertices of SdL to the
vertices of N . It is easy to see that this is a vertex map, that is, the vertices of a simplex
in SdL map to the vertices of a simplex in N , a necessary condition to extend the map by
piecewise linear interpolation. However, the same is not true if we substitute SdN for N .
We therefore consider the second barycentric subdivision of L, Sd2L = Sd(SdL), map
the new vertices to the corresponding barycenters of simplices in N , and finally extend the
thus obtained vertex map by piecewise linear interpolation to µ : || Sd2L || → || SdN ||.

Figure 2.8: The second barycentric subdivision of a triangle in L. The shading indicates
the stars of three vertices of the first barycentric subdivision.

We finally construct a homotopy H : Sp × [0, 1]→ ⋃
C that equals f ◦ µ at t = 0 and

γ at t = 1. It deforms the image under f ◦ µ of the star of a vertex τ̂ of SdL in Sd2L to
the image under γ of the simplex τ of L. Such stars are illustrated in Figure 2.8. To create
the deformation we move every new vertex υ̂ of Sd2L toward the vertex τ̂ of the simplex
υ ∈ SdL whose corresponding simplex τ ∈ L has minimum dimension. To describe
the resulting homotopy, we write g(υ̂) = τ̂ , noting that g(υ̂) = υ̂ if υ̂ is a vertex that
already belongs to the first barycentric subdivision. For the vertices of Sd2L the homotopy
is defined by

H(υ̂, t) = (1− t)f(µ(υ̂)) + tγ(g(υ̂))

and then extended by piecewise linear interpolation for every t. To see that this homotopy
is well defined we note that the image of every simplex is contained in the same convex set
during the entire homotopy. Let η be a simplex in the star of a vertex τ̂ of SdL in Sd2L. At
the beginning, when t = 0, the image of the vertices of η all belong to the set Cτ because
they are all equal or adjacent to τ̂ in Sd2L and f maps barycenters to the intersection of
the sets that correspond to the vertices of its simplex. By convexity, the image of the entire
simplex η is contained in Cτ . At the end, when t = 1, the image of η is a subset of γ(τ),

18



which is contained in Cτ by assumption of L being sufficiently fine. Finally, every point
moves linearly so if the image of η is contained in Cτ both at the beginning and at the end
then it is contained in Cτ during the entire homotopy.

Applying Whitehead’s Theorem. We use a consequence of Whitehead’s Theorem [52,
p. 346] to construct our second homotopy equivalence, between the pairs

⋃
C and N .

To state the theorem, assume the convex sets in the collection C are the closures of the
maximal cells in a CW complex. If

⋃
C is connected and the map f : || SdN || → ⋃

C
described above induces an isomorphism on the homotopy groups of

⋃
C and of the nerve

N of C for all dimensions p, then the map f is a homotopy equivalence. Constructing
a homotopy equivalence thus reduces to proving that the induced map on the homotopy
groups is an isomorphism.

NERVE SUBDIVISION LEMMA. Let C be the collection of closures of maximal cells
of a CW complex, each a convex set in Rn, N the nerve of C, and f : || SdN || → ⋃

C
obtained by piecewise linear interpolation of its values at the vertices. If f(σ̂) is contained
in the intersection of the cells that correspond to the vertices of σ, for each simplex σ ∈ N ,
then f is a homotopy equivalence.

PROOF. First we note that f induces a bijection between the connected components of
SdN and of

⋃
C. We then apply the following argument to each component separately.

Equivalently, we assume without loss of generality that SdN and
⋃
C are both connected.

We want to show that the induced map on the p-dimensional homotopy group, f∗ :
πp(SdN)→ πp(

⋃
C), is an isomorphism. We do this in two steps first showing that f∗ is

surjective and second that it is injective. To show that it is surjective we prove that for each
map γ : Sp → ⋃

C there is a map µ : Sp → || SdN || such that f ◦ µ is homotopic to γ. But
this we already did in the preceding paragraph when we discussed maps of the p-sphere to⋃
C. It remains to show that f∗ is injective. For this we consider a map γ : Sp → ⋃

C that
extends to a map on the ball bounded by the sphere, γ̄ : Bp+1 → ⋃

C. We use the same
construction as before to define a map µ̄ : Bp+1 → || SdN || such that f ◦ µ̄ ' γ̄. From
the construction it is clear that the restriction µ of µ̄ to the sphere satisfies f ◦ µ ' γ. It
follows that the preimage of zero under f∗ is zero, in other words, the kernel of f∗ is zero.
Hence, f∗ is injective and therefore bijective. Whitehead’s Theorem applies showing that
f is indeed a homotopy equivalence, as required.

Since Whitehead’s theorem works not just for CW complexes but also for the spaces
homotopy equivalent to them, it suffices to assume that C is a collection of convex sets
in Rn. We note that it is possible to rephrase the above proof for the case of cells with
all intersections contractible. We use convex cells for simplicity because they suffice for
the needs of this thesis below and in Chapter 5. Chazal and Oudot have independently
obtained a similar result in [23].
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2.4 Distance functions
As mentioned in Introduction, a function that captures a great deal of information about
an object is a distance function. Suppose Y is a subset of Rn. We let dY : Rn → R
be the distance function defined by dY (x) = infy∈Y ‖x− y‖. For each real number α the
corresponding sublevel set consists of all points at distance at most α, Yα = d−1

Y (−∞, α] =
d−1
Y [0, α].

In many applications the space of interest is a finite point sample U . In this case we can
compute the persistence diagram of the distance function dU using one of the following
two combinatorial objects.

Čech complex. We notice that sublevel set Uα = d−1
U [0, α] is a union of balls of radius

α centered at the points in U , Uα =
⋃
u∈U Bα(u). We call the nerve of the collection

of balls {Bα(u)}u∈U the Čech complex of point set U for parameter α, denoted Č(α).
A simplex σ is in the Čech complex Č(α) iff there is a sphere of radius α that encloses
the vertices of the simplex. Since the balls are convex, Nerve Lemma tells us the Čech
complex has the same homotopy type as the sublevel set of the distance function; Č(α) '
Uα. It follows that the homology groups of the Čech complex Č(α) and the union of
balls Uα are isomorphic. Moreover, each vertex of the first barycentric subdivision of the
Čech complex represents an intersection of balls Bα(u). Mapping each vertex into its
respective intersection and interpolating linearly on the simplices of the first barycentric
subdivision gives us a homotopy equivalence by the Nerve Subdivision Lemma. As a
result, the following diagram commutes, and its vertical maps are isomorphisms.

H(Č(α)) H(Č(β))

H(Uα) H(Uβ)
��

//

��

//

Persistence Equivalence Theorem implies that the pairing of births and deaths in the two
sequences is the same.

We can define a function č : Č(∞) → R which maps each simplex into the radius
of its smallest enclosing sphere; č(σ) = min{α | σ ∈ Č(α)}. By definition, each Čech
complex is a sublevel sets of the function, Č(α) = č−1(−∞, α]. Ordering simplices by
the function č and breaking ties by dimension, we obtain a filtration which can be used
with the algorithm described in Section 2.2. Gärtner et al. give an algorithm to compute
the value of č(σ) for any simplex of the Čech complex [43, 45].

The size of the Čech complex with parameter infinity is exponential in the number of
points, card Č(∞) = 2|U |. We can minimize the waste by observing that the homology
of dimension greater than (n − 1) is trivial, and therefore we are only interested in the
n-dimensional skeleton of the Čech complex whose size is

( |U |
n+1

)
.

Alpha shapes. A more efficient combinatorial representation of the distance function is
the alpha shape complex, or alpha shapes for short [34]. To introduce it we need to recall
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some background from computational geometry. Given a set of points U , the Voronoi cell
of u ∈ U is the set of points that are closer to u than to any other point,

V (u) = {x ∈ Rn|‖x− u‖ ≤ ‖x− v‖, v ∈ U}.

Each V (u) is the intersection of finitely many closed half-spaces and therefore a convex
polyhedron. Collectively, the cells cover the entire space thus forming the Voronoi decom-
position of Rn, Vor(U |Rn). Its nerve is called the Delaunay triangulation, Del(U |Rn).
Considering the restrictions of the balls around the points to the respective Voronoi cells,
V (u) ∩ Bα(u), we note that their union is equal to the union of balls. The intersection of
convex sets is convex, therefore the nerve of this collection is homotopy equivalent to the
union of balls. We call this nerve the alpha shape for parameter α, AS(α). Edelsbrunner
showed that inclusion of the alpha shape into the union of balls is a homotopy equiva-
lence [35] by constructing an explicit deformation retraction. The result also follows from
the Nerve Subdivision Lemma. Therefore, the following diagram, where all the maps are
induced by inclusion,

H(AS(α)) H(AS(β))

H(Uα) H(Uβ)
��

//

��

//

commutes and Persistence Equivalence Theorem tells us that persistence diagrams of the
alpha shape and the distance function are the same.

Mapping each simplex to the radius of its smallest empty circumsphere, we get a func-
tion %0 : Del(U |Rn)→ R. Ordering simplices according to this function and breaking ties
by dimension we obtain a filtration suitable for the algorithm described in Section 2.2.

Persistence of dU . The persistence diagrams of the distance function dU can be obtained
from the reduced matrices computed using the algorithm in Section 2.2. Specifically,
each lowest one, l = lowR[i], corresponds to a pair of simplices σl and σi. We draw the
point (č(σl), č(σi)) or (%0(σl), %0(σi)), depending on whether we used Čech or alpha-shape
filtration, in the diagram whose dimensions is that of simplex σl.

We illustrate some of the strengths of persistence using distance functions. Suppose
we want to estimate the homology of some unknown subset X of Rn from a point sample
U . We call U an ε-approximation of X if the Hausdorff distance between U and X is at
most ε. Equivalently, U is contained in Xε = d−1

X [0, ε] and, symmetrically, X is contained
in Uε = d−1

U [0, ε]. It follows that the maximum difference between the distance functions
defined by U and by X is at most ε. The converse is also true. Therefore U is an ε-
approximation of X iff ‖dU − dX‖∞ ≤ ε. Additionally we assume that the space X is well-
behaved. Calling the smallest positive homological critical value of the distance function
dX the homological feature size of X, hfs X, we assume that it exceeds 4ε. In this case
the following theorem follows from the Stability Theorem as was pointed out by Cohen-
Steiner et al. [25].
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HOMOLOGY INFERENCE THEOREM. Given an ε-approximation U of space X ⊆ Rn

with homological feature size of X exceeding 4ε, hfs X > 4ε, the p-dimensional Betti
number of X is equal to the number of points in the upper-left quadrant of the persistence
diagram Dgmp(dU) with lower-right corner at (ε, 3ε).

The proof follows from Stability Theorem by examining Figure 2.9 Indeed, because of the

ε 3ε 4ε0

2ε
3ε
4ε

Figure 2.9: Under the conditions of the Homology Inference Theorem, the dark regions
contain the persistence diagram of dX. The light regions contain the persistence diagram
of dU .

assumption on the homological feature size of X it follows that no point in its persistence
diagram has a birth or death value in the interval (0, 4ε], therefore all the points in the
persistence diagram of X lie in the dark shaded regions in the Figure 2.9. I.e. the homology
classes in the filtration of the sublevel sets of the distance function dX are either born at 0
and die after 4ε, or are born after 4ε. Since ‖dX − dU‖∞ ≤ ε, Stability Theorem tells us
that the persistence diagram of dU looks like the lightly shaded portion of Figure 2.9. The
number of points in the upper-left quadrant at (ε, 3ε) is the same as the number of points
with birth equal 0 in the diagram of dX. The claim follows.

It would be misleading to say that we need the power of the Stability Theorem to
obtain the Homology Inference Theorem. Indeed, as observed by Chazal and Lieutier
[21], its proof follows trivially from the following sequence of homomorphisms between
homology groups

H(X)→ H(Uε)→ H(X2ε)→ H(U3ε)→ H(X4ε).

All the homomorphisms are induced by inclusions of respective spaces. The assumption
on the homological feature size of space X tells us that the image of H(X) in H(X4ε) is
isomorphic to H(X2ε), and therefore the image of H(Uε) in H(U3ε) is isomorphic to H(X)
which is exactly the statement of the homology inference theorem.

However, it is equally misleading to say that the Homology Inference Theorem reflects
the full power of the Stability Theorem. Examining the structure of the persistence dia-
grams of function dU we notice that they must contain two regions with no points, the
vertical strip between births of ε and 3ε, and the small triangle adjacent to the death axis.

22



This suggests that given a point sample U , and persistence diagrams Dgm(dU) of its dis-
tance function, we can conclude that the Hausdorff distance between U and X cannot be
ε if the regions of the diagram that are supposed to be empty for this ε contain a point. In
other words under assumptions that the hypothetical space X is well-behaved and given
sample U is close to X we can conclude what the Hausdorff distance between U and X
cannot be!

To formalize above discussion we say that ε is an admissible noise level, i.e. Hausdorff
distance between U and X, for point (x, y) if the point lies in the shaded region in the
diagram of dU in Figure 2.9. It is inadmissible otherwise. If ε is admissible for every point
in the diagram then it is admissible for the entire diagram; otherwise it is not. Considering
a single point (x, y) in a persistence diagram of dU , we get the following three ranges of
admissible ε.

x > 3ε i.e. ε < x/3 (2.1)
x ≤ ε and y > 3ε i.e. x ≤ ε < y/3 (2.2)

y − x ≤ 2ε i.e. ε ≥ (y − x)/2 (2.3)

The intervals are summarized in Figure 2.10. The first condition accounts for the points

0

x/3

x

y/3

(y − x)/2

Figure 2.10: Admissible noise intervals.

that represent the features born after 3ε. The second condition accounts for the points
in the upper-left quadrant. If the point falls into this region, it counts towards the true
homology of the space X. The third condition represents the expanded diagonal. It is
the right-most region in Figure 2.10, and it can be arbitrarily-close to the origin for low
persistence points. Therefore, for low persistence points with high birth value all noise
levels are admissible.

Taking the union of the inadmissible noise intervals for every point we obtain the
inadmissible noise intervals for the entire diagram. The small values of ε are always
admissible since we can always interpret a point sample as a space on its own, typically
over-fitting our model. Same goes for the large values of ε: zooming out sufficiently far
away any space looks like a point.

2.5 Piecewise-linear framework
Another set of functions that is of interest in practice is the real-valued functions f :
||K || → R defined on the vertices of a triangulationK and interpolated linearly on the inte-
riors of the simplices. Such functions are common in practice (when the underlying space
is sampled at discrete points), and are of interest in scientific visualization. We restrict our
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attention to the functions defined on the triangulations of d-manifolds, i.e. ||K || = Md. We
assume that f is non-degenerate, that is the function values are different at all the vertices.
Using these function values we refine the notions of star and link. Specifically, the lower
star of a vertex u is the set of simplices in the star for which u has the maximum value of
any vertex. The lower link of u is the set of faces of simplices in the lower star that do not
also belong to the lower star:

St−u = {σ ∈ St u | v ∈ σ ⇒ f(v) ≤ f(u)},
Lk−u = {τ ∈ Lk u | v ∈ τ ⇒ f(v) < f(u)}.

Upper stars and upper links are defined symmetrically. We observe that if f is non-
degenerate, the lower and upper stars and links of a vertex do not depend on the function
values but only on their ordering by the function values.

Considering the evolution of the sublevel sets of such linearly-interpolated function
f , we note that their homology can only change when the sublevel set passes a value of
a vertex. Indeed, every sublevel set deformation retracts onto a simplicial complex; we
construct the retraction as follows. For every simplex whose interior is intersected by the
given level set f−1(a) we consider the maximal face not contained in the sublevel set, and
the maximal face contained in it. Examining the join of the two faces, which is defined
as the disjoint line segments connecting every point of one simplex with every point of
the other simplex, we obtain the necessary deformation retraction ra, see Figure 2.11.
Specifically, each point z on a join line segment (x, y) with f(x) < a and f(y) > a,

a

Figure 2.11: Deformation retraction of a sublevel set of a piecewise-linear function. The
retraction follows dotted joins of faces above and below the level set threshold. It agrees
on the faces of the simplices. The shaded sublevel set deformation retracts on the union of
lower stars of the vertices within the sublevel set shown in bold.

follows the retraction ra(z, t) = (1 − t)z + tx. By construction the sublevel set retracts
onto the union of lower stars of the vertices in the sublevel set. Denoting the union by
Ka =

⋃
v∈VertK,f(v)≤a St−v, it follows that its inclusion into the sublevel set f−1(−∞, a]

is a homotopy equivalence, with the retraction ra its homotopy inverse.
Therefore, one may construct simplicial complexes homotopy equivalent to the sub-

level sets of the function by adding the lower stars of the vertices in the order of increasing
function value. The following diagram, where all maps are induced by inclusion, com-
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mutes.
H(f−1(−∞, a]) H(f−1(−∞, b])

H(Ka) H(Kb)

//
fba

OO

//
gba

OO

Since the vertical maps are isomorphisms, Persistence Equivalence Theorem tells us that
the persistence diagrams of the two sequences of homology groups are the same.

Ensuring that faces precede cofaces within individual lower stars, we obtain a total
ordering on the simplices which we call the lower-star filtration. Using the algorithm of
Section 2.2 we can compute the pairing of the simplices in the filtration. From the above
discussion it follows that if a p-dimensional simplex σ in the lower star of vertex s is paired
with a (p+ 1)-simplex τ in the lower star of vertex t, then we have a point (f(s), f(t)) in
the p-dimensional persistence diagram of the function, Dgmp(f).

If vertices s and t are the same, then point (f(s), f(t)) lies on the diagonal and has
persistence zero. If all simplices in the lower star of the vertex are paired among them-
selves, then the homology of the sublevel set does not change as it passes the value of that
vertex, and we call the vertex regular. It is not difficult to see that this happens iff the
reduced Betti numbers of the lower link of the vertex are zero, i.e. its lower link has trivial
homology. More generally p-dimensional homology of the sublevel set can change with
the addition of the lower star of a vertex only if the (p−1)- or p-dimensional homology of
its lower link is non-trivial. This leads to a convenient characterization of vertices in the
lower-star filtration of a manifold. Specifically, we say that if the only non-zero reduced
Betti number of its lower link is β̃p(Lk−v) = 1, then vertex v is a (p+ 1)-saddle, or mini-
mum if p = −1, or maximum if p = (d−1), i.e. entire link is the lower link. Equivalently,
we may say that vertex v is critical with index (p + 1) if β̃p(Lk−v) = 1. If we isolate the
persistence pairing of a single lower star within the lower-star filtration, then observation
that unpaired simplices reflect the homology of the domain gives us the following lemma.

DIMENSION-INDEX LEMMA. A vertex v is regular iff all simplices in its lower star are
paired among themselves. Otherwise, it is critical with index equal to the dimension of the
simplex not paired within the lower star.

This classification reflects the classification of critical points in the smooth generic case of
Morse functions [59, Theorem 3.2] if the former is considered in terms of the changes to
the homology of the sublevel sets produced by each critical point. If the lower link is more
complicated than a single non-trivial cycle, we say vertex v is a multi-saddle combining
β̃p(Lk−v) (p+ 1)-saddles for each p.

In light of the above discussion it is natural to think of function f̄ : K → R that assigns
to each simplex the maximum value that f attains on it, f̄(σ) = maxx∈σ f(x). One can
think of f̄ as a piece-wise constant approximation of function f . If f is generic, i.e. its
values on all the vertices of the simplicial complex are unique, then ordering simplices
by their values under f̄ and breaking the ties by dimension gives us exactly the lower-star
filtration of f described above. Therefore, persistence diagrams resulting from f̄ are the
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same as those of f . Such piece-wise constant functions supply a convenient notation in
the next two chapters.
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Chapter 3

Simplification

3.1 Motivation
Topological analysis can be used to make sense of real-valued data, to detect interesting
features and to observe patterns that cannot be seen in the raw. Regardless of how the
data is obtained, whether it is observed in experiments or computed in simulations, data
is unfortunately always burdened with noise. While the source of the noise may range
from purely physical such as imprecise measurements to purely computational such as
the choice of a triangulation, the difficulties it creates always remain. In this chapter
we consider the problem of ridding the data of that noise by simplifying the function it
defines. Various parts of this chapter are based on the joint work and technical discussions
with Nina Amenta, Dominique Attali, Herbert Edelsbrunner, Marc Glisse, Samuel Hornus,
Francis Lazarus, and Valerio Pascucci [6, 40].

It is important to note that whether something is noise or a feature is in the eyes of
the beholder. We endorse the idea of Cohen-Steiner, Edelsbrunner, and Harer [25] that the
importance of a feature can be quantified by the amount of change necessary to eliminate
it. We therefore study the question of how one would eliminate a feature in order to both
understand what parts of the domain it occupies, and what the function looks like without
it.

To state our results, we first introduce the central concept of this chapter. Let X be a
topological space, f : X→ R a continuous function, Dgmp(f) its dimension p persistence
diagram, and ε a positive constant.

DEFINITION. A dimension p strong ε-simplification of f is a non-degenerate function
g : X → R such that ‖f − g‖∞ ≤ ε and all persistence diagrams of g are the same as
those of f except for Dgmp(g) which is the same as Dgmp(f) but with all off-diagonal
points at L1-distances at most ε from the diagonal removed.

See Figure 3.1 for an illustration. The corresponding notion of a weak ε-simplification
would allow for the remaining points in the persistence diagram to move by at most ε.
In this chapter we concern ourselves only with the strong ε-simplification, and refer to
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it as simply an ε-simplification. Naturally, any strong ε-simplification is also a weak ε-
simplification.

Once we know that ε-simplifications exist for all dimensions, we can iterate the con-
struction and erase the points close to the diagonal in all persistence diagrams. We refer
to the resulting function as an ε-simplification of f . In this chapter, we consider the prob-

Birth

Death

ε

Figure 3.1: Left: two embeddings of a 2-manifold M in R3. The functions f, g : M →
R are the height functions of the light shaded and the combined light and dark shaded
embeddings. Right: the dimension 0 persistence diagrams of f and g. The two points
below the threshold distance ε from the diagonal are present in the persistence diagram of
f but not in that of its ε-simplification g. The other two points appear in both diagrams.

lem of finding ε-simplifications of a function f , either restricted to a single dimension or
iterated across all dimensions. Our main result is a constructive proof that for 2-manifolds
such simplifications exist.

SIMPLIFICATION THEOREM FOR 2-MANIFOLDS.

A. Given a 2-manifold M, a function f : M → R, a constant ε > 0, and a dimension
p = 0, 1, there exists a dimension p ε-simplification g : M→ R.

B. For p = 0, 1 and all ε > δ > 0 there exists a 2-manifold M and a function
f : M → R such that if g : M → R is a dimension p ε-simplification of f then
‖f − g‖∞ > ε− δ.

We also demonstrate a negative result in higher dimensions, namely that there are 3-
manifolds such that for any function on them, there are values of ε such that ε-simpli-
fication does not exist.

The problem of simplifying continuous functions has been studied before, in many
different areas and from many different angles. The work related most directly to ours is
on the simplification of Morse-Smale complexes initiated in [38]. Such complexes capture
information about the gradient vector field by partitioning the domain into regions of uni-
form flow. While the simplification algorithms given in [14, 38, 49] follow the persistence
order, they only simplify the complex and not the function itself. The use of the simpli-
fied complex together with the original data may be tolerable for visualization purposes,
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but it is not satisfactory when the simplified data is used in the subsequent data analysis
stage. An example of a weak ε-simplification technique is the persistence-sensitive flood-
ing described in [1]. It is worth noting that the example used for the proof of part B of the
Simplification Theorem shows that the error bound of ε/2 for simplification of a single
pair of critical vertices claimed by Bremer et al. [14] is in general unachievable.

In their original paper [39], Edelsbrunner et al. also consider the question of topologi-
cal simplification. However, there exist significant differences between their work and the
results presented in this chapter. The most obvious distinction comes from the problem
statement itself. Edelsbrunner et al. propose to move all the points of the persistence dia-
gram towards the diagonal regardless of their persistence and do not bound the magnitude
of the involved motion; in this chapter, we require points of persistence higher than ε to
remain in place (or move by at most ε in the weak case). In addition, we make explicit
guarantees about the distance between the simplified and the original functions.

Forward corollaries. The following results are corollaries of the Pairing Change Theorem
from page 45 in the next chapter. We do not create any circular arguments by stating them
here since the next chapter does not rely on any results from this one. We choose this order
only for the convenience of exposition.

In the next section we replace piece-wise linear function f : ||K || → R by a piece-
wise constant function f̄ : K → R defined on the simplices as described in Section 2.5.
Suppose that we continuously change the function values at the simplices. As a result the
points in the persistence diagram move, but not more than the amount of change of the
values. Even though the motion is therefore continuous, the pairs defining the points in
the diagram can switch simplices, but only at moments in time when these simplices have
the same value.

SWITCH LEMMA. Transposing two consecutive simplices σi and σi+1 in the filtration
can only affect the persistence pairs containing σi and σi+1.

Chapter 4 gives an algorithm to maintain the pairing if two adjacent simplices are trans-
posed and the new sequence of complexes remains a filtration. In the following sections,
we will be transposing adjacent simplices σi, σi+1 in the ordering. We get the first con-
straint on switches between persistence pairs by observing that the indices in each pair are
contiguous and increasing.

SAME DIMENSION LEMMA. Transposing simplices of different dimensions preserves
the persistence pairing.

A crucial second constraint on how switches between pairs can happen follows from the
analysis in Chapter 4. To describe it, we call two pairs of simplices, (σi, σj) and (σk, σl),
nested if i < k < l ≤ j and disjoint if i < j < k < l. To use these notions for unpaired
simplices, we consider them artificially paired with a dummy simplex with subscript equal
to infinity and we permit equality when we compare subscripts that are infinite.
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NESTED-DISJOINT LEMMA. During a transposition of two consecutive simplices, the
pairs can switch these simplices iff the pairs are nested or disjoint both before and after
the transposition.

This lemma in particular implies that if before the transposition there exist k and l with
k < i < i + 1 < l such that σk is paired with σi+1 and σi is paired with σl, then after σi
and σi+1 transpose we still have the same two pairs.

3.2 Overview
In this section we present a high-level view of our approach to finding an ε-simplification.
We discuss the details of the algorithm in the next section.

Basic strategy. Starting with a function f : ||K || → R defined on the vertices and linearly
interpolated on the interiors of the simplices, to compute persistence, we construct the
lower-star filtration as described in Section 2.5. Our goal is to obtain function g : ||K ′ || →
R with ||K ′ || = ||K || also defined on the vertices and linearly interpolated, which satisfies
the definition of ε-simplification. It is natural to try to manipulate the values at vertices of
the function f to obtain g while maintaining the correct pairing in the lower-star filtration.
This approach is explored in [40]. However, in the next two sections we pursue a different
strategy. We start with a lower-star filtration given by f and assign to each simplex the
maximum of the values of its vertices, thus obtaining a piece-wise constant function f̄ :
K → R, introduced in Section 2.5. We manipulate the filtration directly by changing
values of individual simplices, i.e. by changing function f̄ . Once it is in the form that
gives us the right persistence diagrams, we convert it back into the lower-star filtration by
defining function values on the vertices of K ′ = SdK, the first barycentric subdivision of
K. To describe how to do the latter operation, we first consider the following definition.

DEFINITION. In a filtration, simplices σ and τ are said to be locally paired if τ comes
immediately after σ.

We note that if σ and τ are locally paired, then σ is a codimension 1 face of τ . This
observation can be seen, for example, directly from the algorithm that computes the pairing
described in Section 2.2. Because of the procedure described in the next paragraph, locally
paired simplices can be thought of as having the same value, and thus being a pair of
persistence zero.

From filtration to lower-star filtration. Suppose we have a filtration with values assigned
to individual simplices. Taking the first barycentric subdivision of the filtered simplicial
complex, we can assign the value of each simplex to its barycenter, and linearly interpolate
on the interiors. The resulting lower-star filtration gives the same pairing of values as the
filtration that we started with. However, if the function is generic, i.e. the value on every
vertex is unique, then all vertices in this lower-star filtration are critical in the sense of
Section 2.5. Indeed, the lower link of every vertex is the boundary of the simplex that it
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subdivided, so on a 2-manifold barycenters of triangles become maxima, barycenters of
edges becomes saddles, while the original vertices become minima.

However, suppose that we have a local pair (σ, τ) in the starting filtration. Let σ̂ and τ̂
be their respective barycenters. Suppose that we reverse their order, i.e. we exchange the
values assigned to the two vertices. We claim that as a result the vertices σ̂ and τ̂ become
regular. Indeed, the lower link of τ̂ is now boundary of τ without σ, which is a ball. While
the lower link of σ̂ becomes τ̂ together with its join to the boundary of σ, which also
results in a ball; see Figure 3.2. Performing such a reversal for every local pair we see that

σ̂
τ̂

τ̂

σ̂

Figure 3.2: First barycentric subdivision of a triangle τ paired with its face σ. Left: lower
star of σ̂ is two vertices that form the boundary of edge σ, and lower star of τ̂ is the 1-
sphere that is the boundary of the triangle τ . Right: after reversal the lower stars of σ̂ and
τ̂ are shaded, the edges of their lower links are bold.

starting with a filtration we can obtain a lower-star filtration where the persistence pairing
is that of non-locally paired simplices, while barycenters of all locally-paired simplices
become regular vertices.

Canceling pairs and duality. Armed with the above reordering procedure, we want to
change all pairs below the given threshold into local pairs. We discuss how to simplify
a 0-dimensional diagram for a function on a 2-manifold, i.e. vertex-edge pairs in the fil-
tration. The 1-dimensional diagram can be handled symmetrically using the following
observations.

If K is a triangulation of a 2-manifold, we denote by K∗ the cell complex dual to K,
i.e. K∗ contains a vertex for each triangle, an edge for each edge, and a 2-dimensional cell
for each vertex. The duals of cofaces of simplex σ in triangulation K become faces of its
dual σ∗ in K∗, see Figure 3.3.

The first barycentric subdivisions of complexesK andK∗ are the same. We can assign
to each vertex σ̂ in the barycentric subdivision SdK the value equal to the index of σ in
the filtration. Interpolating linearly on the simplices, and computing persistence of the
resulting function, we get a pairing between indices that is the same as in the original
filtration. Cohen-Steiner et al. [26] have shown that for a function f defined on a manifold,
the persistence pairing of f and −f is the same, except that we take negative of values,
and births and deaths are switched. But the negative of function f defined above is exactly
the same as assigning to each vertex σ̂ of the first barycentric subdivision SdK∗ = SdK
the value equal to the index of cell σ∗ in the filtration of K∗ minus the cardinality of K∗

plus one, i.e. −f̄(σ̂) = index(σ∗) − (cardK∗ + 1). Since the persistence pairing is the
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v

Figure 3.3: Closure of the star of vertex v and its dual (open) cell complex. Shaded cell is
dual to vertex v. Its boundary is dual to the cofaces of v.

same, it follows that cells τ ∗ and σ∗ are paired in the filtration of K∗ iff σ and τ are paired
in the filtration of K.

We perform the cancellations by decreasing the values associated with edges, which
interpreted after the above reordering corresponds to lowering saddles. One’s initial in-
clination may be to also increase the values at vertices, however, as example in Section
3.4 shows, it is sometimes impossible to change values on the extrema since they may get
stuck as they encounter other critical vertices.

We consider the vertex-edge pairs (v, e) in order of increasing persistence, so that if
one pair is nested in another, we process the nested pair first. We lower a contiguous set
of simplices T , initially set T = {e}, and make sure that we do not change the persistence
pairing in the process. The structure of the filtration is shown in Figure 3.4. Let ω be the
simplex that immediately precedes T in the ordering of the simplices. Lowering T means

v ω e

Figure 3.4: Structure of T during cancellation of (v, e) pair. T is contiguous in the filtration
and shaded in the figure. It consists of locally paired vertices and edges with edge e being
the only non-locally paired simplex. Simplex ω immediately precedes T in the filtration.

either moving ω past T by assigning all simplices in T a value slightly less than f(ω), or
expanding T to include ω by setting the values of all simplices of T equal to f(ω).

The former approach is preferable. A difficulty arises when ω is locally paired and
its paired face is also a face of a simplex in T since moving T below ω would destroy
the local pair, and we cannot move T past the shared face. In this case, we expand T
which preserves the local pair. If ω is a non-locally paired simplex, its persistence is
higher than (v, e), and we cannot afford to move the corresponding point in the persistence
diagram. Therefore, we need to make sure that as we lower T past ω, the pairing of
the simplices does not change. This requirement dictates two properties we maintain as
invariants, namely that e be the only non-locally paired simplex in T and that T is an open
path. We finish when T reaches vertex v, at which point we add v to the set, and reorder
the simplices in T , so that they all become locally paired.
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3.3 Simplification Details
As we lower the set of simplices T described above we maintain the following three prop-
erties as invariants.

I. The only non-locally paired simplex in T is e;

II. T forms an open path;

III. T is a contiguous subsequence in the filtration.

The invariant is trivially true when T = {e}.
Case analysis. Let ω be the simplex immediately preceding T in the filtration. Then the
following possibilities arise.

Case 1. ω is a non-locally paired triangle. Since T is a path, all simplices in T are ei-
ther vertices or edges. From the Same Dimension Lemma it follows that we can
transpose T and ω without any changes in pairing.

Case 2. ω is a non-locally paired edge. The Same Dimension Lemma and the Nested-
Disjoint Lemma tell us that we can transpose ω and T . Indeed, when ω precedes
a vertex, we can transpose them without pairing changes. Subsequently, when ω
precedes an edge, the pairing is neither nested nor disjoint. The same is true when
ω precedes edge e because of the order in which we consider the pairs.

Case 3. ω 6= v is a non-locally paired vertex. ω cannot be a face of an edge in T . Other-
wise it would be paired with e, since the latter would be merging ω with another
component. Therefore, we can transpose ω and T without changes in pairing.

Case 4. ω = τ is a triangle paired with edge σ immediately preceding it in the filtration.
We can transpose the local pair (σ, τ) and T in the filtration: triangle τ encounters
no obstacles by the Same Dimension Lemma, while σ avoids conflicts with ver-
tices by the Same Dimension Lemma, and edges by the Nested-Disjoint Lemma.

Case 5. ω = τ is an edge paired with vertex σ immediately preceding it.

Case 5a. If vertex σ is not a face of an edge in T , we can transpose the local
pair and the subsequence T . Indeed, considering the transposition of
(σ, τ) with a single local pair in T , we see that no change in pairing is
possible (the edge in each local pair remains paired with its respective
face). Similarly, when (σ, τ) reaches e, transposing τ and e, and then σ
and e cannot change the pairing.

Case 5b. If vertex σ is a face of an edge in T , then we expand T to include (σ, τ).
Since T is an open path before the expansion, it remains an open path
after we add one of its boundary vertices σ and another edge τ that has
σ as a face.
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It is trivial to check that the invariant is maintained in each of the above cases.
We repeatedly perform transpositions and expansions prescribed by the above case

analysis until vertex v immediately precedes subsequence T . Once this occurs, we add v
to T , and reorder all the simplices in T , so that they all become local pairs.

Reordering. From the above case analysis and its guiding invariant, it follows that T is
a path consisting of locally-paired negative edges and positive vertices with the exception
of edge e and vertex v which are not locally paired. Moreover, v is in the boundary of
the path T , while its other side is open. We enumerate all the edges and vertices of the
path as we traverse it starting from v = v1. This gives us two sequences of vertices and
edges: v1, . . . , vk, and e1, . . . , ek. We replace the sequence T in the filtration by the se-
quence vk, ek, vk−1, ek−1, . . . , v1, e1. Since each sequence is a traversal of the path T , we
see that the resulting sequence satisfies requirements of a filtration, i.e. the faces precede
the cofaces. In addition, since vi is a face of ei, all the pairs in the resulting filtration
are locally paired, which was our original goal. Figure 3.5 illustrates the reordering pro-
cedure. In terms of the function value we can think of the reordering as assigning to all

v = v1

e

vk
ek

Figure 3.5: Once sequence T reaches vertex v, it represents a half-open path. Reordering
the simplices so that the vertices are increasing from the open end of the path to v, and
each edge appears immediately after its last face, we get all simplices in sequence T to be
locally paired.

the simplices function values in the range f̄(v) and f̄(v) + δ (for sufficiently small δ), so
that all the simplices have distinct values that increase in the order of the above sequence
vk, ek, . . . , v1, e1.

Function value change. It remains to verify that after canceling all persistence pairs be-
low the given threshold ε, the change in the function value on any simplex does not exceed
ε. The only questionable case arises when we cancel two pairs (v, e) and (v′, e′) that are
neither nested, not disjoint as shown in Figure 3.6. If (v′, e′) has lower persistence than

v v′ e e′

Figure 3.6: Overlapping pairs (v, e) and (v′, e′) in the filtration.
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(v, e), and therefore is canceled first. It is not immediately obvious what happens to the
simplices that are lowered to precede edge e during the simplification of pair (v′, e′). If
they were to be lowered further during the simplification of pair (v, e), they would aggre-
gate the total function change. If the sum of the two persistences exceeded ε, so would
the total function change. However, we observe that the vertices lowered to precede edge
e cannot be faces of any edge that already came before e in the filtration. Therefore, from
the above case analysis (specifically, Case 5a), it follows that for intersecting persistence
intervals as in Figure 3.6, the function change on every simplex does not exceed ε.

3.4 Lower bound
In this section, we prove part B of the Simplification Theorem for 2-Manifolds stated in
Section 3.1: for p = 0, 1 and all ε > δ > 0 there exists a 2-manifold M and a function f :
M → R such that if g : M → R is a dimension p ε-simplification of f then ‖f − g‖∞ >
ε− δ. The topology of the 2-manifold is less important for the proof than the details of the
function. We thus let M be the 2-sphere and we choose f as the (vertical) height function
of the embedding of M displayed in Figure 3.7. There are three critical points with similar

A

B

P

R

Z

α

a

b

r − ε

r − δ
r

z

Q

Figure 3.7: Embedding of the 2-sphere M in R3 such that f : M→ R is its height function.
There are two minima, A and B, two saddles, P and Q, and two maxima, R and Z. The
two ascending paths from A to P decompose M into a left and a right hemisphere.

heights, f(P ) = r − ε, f(Q) = r − δ, f(R) = r, where 0 < δ < ε. The two minima
have function values f(A) = a < f(B) = b that are both much smaller than r, and the
maximum has a function value f(Z) = z that is much larger than r. The critical points
are paired as (B,Q), (P,R), leaving A and Z unpaired. The off-diagonal points in the
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persistence diagrams are therefore

Dgm0(f) : (a,∞), (b, r − δ);
Dgm1(f) : (r − ε, r);
Dgm2(f) : (z,∞).

All points have L1-distance larger than ε from the diagonal, except for (r − ε, r) whose
L1-distance from the diagonal is ε. To get a dimension 1 ε-simplification, we thus need
to cancel P with R and leave the other critical points intact (or replace them by new
critical points at the same height). It seems plausible that f does not have a dimension 1
ε-simplification that changes the function by (ε− δ′) with δ < δ′ < ε. Indeed, we cannot
lowerR by more than δ since it gets stuck atQ. Hence we need to raise P by at least ε−δ.
A more formal argument supporting this conclusion will be presented shortly. Since this
works for arbitrarily small δ > 0, this implies the claimed lower bound. To prove the same
bound for p = 0 we use the construction upside-down, that is, we substitute −f for f .

We now give the formal argument for the claim that the difference between f and its
ε-simplification g is ‖f − g‖∞ > ε − δ. To get a contradiction, we assume there is a
dimension 1 ε-simplification g : M → R of f with ‖f − g‖∞ = ε − δ′ for some δ′ > δ.
Let α be the cycle consisting of two monotonically increasing paths fromA to P , as drawn
in Figure 3.7. It decomposes the 2-sphere into a closed left hemisphere (containing Z) and
a closed right hemisphere (containing B,Q,R). Consider the restrictions f̄ and ḡ of f
and g to the right hemisphere. The diagram Dgm0(f̄) is the same as Dgm0(f). By the
Stability Theorem, the diagram Dgm0(ḡ) contains a point (b′, q′) at L∞-distance at most
ε from (b, r − δ) in Dgm0(f̄). The value q′ is that of a saddle Q′ of ḡ. By definition of ε-
simplification, we have g(Q′) = q′ = r− δ, which is larger than g(x) ≤ f(x) + (ε− δ′) <
r − δ for any point x on α. This implies that Q′ lies in the interior of the right hemisphere
and is therefore also a saddle of g. Furthermore, there are no other finite off-diagonal
points in the persistence diagrams of g. It follows that g has only one saddle, namely Q′.
A similar argument implies that g has only one maximum, Z ′, in the left hemisphere and
that g(Z ′) = z. Since there is only one maximum and only one saddle, we can draw a path
from Z ′ to Q′ that monotonically decreases in g. This path crosses the cycle α. But the
points x on α have g(x) < r− δ which is less than the values of Z ′ and Q′ at the two ends.
This contradicts the monotonicity of the path and implies ‖f − g‖∞ > ε− δ, as required.

3.5 Higher Dimensions
An important question is the extension of the results of this chapter to higher dimensions.
We know that there are 3-manifolds for any function on which there are (infinitely many)
values of ε such that no ε-simplification of the functions exists for those values.

The proof of this insight can be credited to Henri Poincaré by way of Morse the-
ory. When he originally stated his conjecture [70], Poincaré suggested that a compact
3-manifold with homology of a sphere is a 3-sphere. He discovered a counter-example to
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that claim in what we now know as Poincaré homology sphere which has homology of
a 3-sphere, but is not simply-connected, famously restating his conjecture to require the
manifold to have a trivial fundamental group [71]. The problem remained open for a cen-
tury until Grigori Perelman recently provided a proof [67, 68, 69]. See [63] for a historical
account.

Poincaré homology sphere Ŝ3 presents us with an example of a manifold on which
not all ε-simplifications exist. Given any function f : Ŝ3 → R, its 0- and 3-dimensional
persistence diagrams each contain one point with death at infinity. These points reflect the
homology of the sphere. The rest of the points have finite persistence, and we let ε0 be the
largest finite persistence of any point in any dimensional diagram. See Figure 3.8.

ε0

0 3

Birth
D

ea
th

Figure 3.8: Left: Poincaré sphere can be obtained from the dodecahedron by gluing its
opposite faces identified with the minimal clockwise twist. Right: persistence diagrams of
any function on the Poincaré sphere consist of points at infinity in 0- and 3-dimensional
diagrams, shown in black, and finitely persistent points in the diagrams of any dimension.

There does not exist an ε-simplification of f for any ε ≥ ε0. Indeed if such function
existed, its persistence diagrams would consist of two points with infinite deaths, implying
that the function had only two critical points. However, from Morse theory we know that
if a (generic) function has only two critical points, its domain is a sphere [59, Theorem
3.6], a contradiction.

Similar argument shows that if one can show that an ε-simplification exists for any
function on a compact, simply-connected 3-manifold, one would have a proof of the
Poincaré conjecture. This speaks of the general difficulty of the question in higher di-
mensions. Sadly, we do not know how to show the implication in the opposite direction
which prevents us from using Perelman’s proof of Poincaré conjecture.

The question that remains open is what happens if the domain is a sphere. In scientific
visualization it is common for the data to be given on a 3-dimensional volume embedded
in the Euclidean space R3. Compactifying R3 we get a 3-sphere, making the open question
of great interest in practice.
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3.6 Discussion
The main contribution of this chapter is a constructive proof of the existence of ε-simpli-
fications for continuous functions on 2-manifolds. The proof extends to 2-manifolds with
boundary since we can convert those into 2-manifolds without boundary by gluing a disk
to each boundary cycle. A curious aspect of our proof is that dimension 0 and dimension
1 homology can be simplified independently. Indeed, we can cancel all minimum-saddle
pairs of persistence at most ε while leaving all saddle-maximum pairs intact, or vice versa.
The only catch one must keep in mind is that not all simplices in a lower star are nec-
essarily locally paired from the start. Therefore, when simplifying, for example, only
0-dimensional diagram, one still has to compute a “0-simplification” of the 1-dimensional
diagram to get rid of such non-local pairs; and vice versa. It is also worthwhile to men-
tion that the algorithm is combinatorial and we are free to assign function values that are
consistent with the computed ordering of the vertices.

The fact that we can simplify the diagrams in order of increasing persistence allows
us to incrementally compute a hierarchy of simplifications without having to start from
scratch every time. Attali et al. [6] reexamine the algorithm of this chapter with com-
putation of such hierarchy in mind. They realize that the algorithm affects only negative
edges which by definition form a forest. They exploit this realization to get an algorithm
which finds an ε-simplification on a 2-manifold in linear time, as opposed to quadratic
time algorithm presented in this chapter.

While our motivating problem has been simplification of piece-wise linear functions,
the algorithm that we obtain is more general. It works directly on a filtration and reor-
ganizes it in a way that is agnostic to function values — only the order of the simplices
matters. Can we use this procedure to reorder an alpha-shape filtration to obtain a sim-
plicial complex with the homology suggested by the Homology Inference Theorem in
Section 2.4 that is close to the given point set?

It is important not to underestimate the significance and difficulty of the reordering
procedure illustrated in Figure 3.5 that concludes cancellation of a single pair. While trivial
in two dimensions, lack of this procedure is the main obstacle to extending results of this
chapter to higher dimensions; everything else that we do works in arbitrary dimensions. Its
main purpose is to construct a generic function, which cannot be achieved by assigning the
same value to all the simplices affected by a cancellation of a pair. It does so by reordering
the filtration, so that the canceled pair leaves no combinatorial trace. This in turn allows us
to cancel pairs considering each one independently. So far we miss this luxury in higher
dimensions.

The simplification of continuous functions is a central problem in visualization. It may
be used to clean up Morse-Smale complexes [38] and Reeb graphs [53, 72], which are
powerful tools in the study and visualization of continuous data in scientific computing.
This strengthens the importance of extending our results to three- and higher-dimensional
spheres as suggested in the previous section.
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Chapter 4

Persistence Vineyards

4.1 Vines and Vineyards

Motivation and results. If we take a function that changes continuously, from the Sta-
bility Theorem we know that its persistence diagrams also change continuously. We can
watch them and understand the changes by observing how the points move and rearrange
to form fleeting patterns. We may solidify the patterns by stacking up the diagrams, letting
each point trace out a curve in space, which we refer to as a vine. This construction is
a powerful metaphor aimed at gaining insight into continuous processes and quantifying
some of their less tangible aspects. However, constructing the vine turns out to be more
difficult than one may expect. Common time-series data is too sparse to compute them by
matching the points in contiguous diagrams, and refining the series is expensive and some-
times not sufficiently powerful to remove all ambiguities. Based on the joint work with
David Cohen-Steiner and Herbert Edelsbrunner [29], this chapter describes an alternative
approach to constructing the vines by maintaining an ordering of the simplices during a
homotopy.

The main contributions of this chapter to the theory and practice of persistent homol-
ogy are:

1. an algorithm that maintains the persistence diagram in time O(m) per transposition,
where m is the number of simplices used to represent the topological space and the
function;

2. a new and elementary proof of the stability of persistence diagrams;

3. the definition and computation of vineyards (continuous families of persistence dia-
grams) for time-series of continuous functions;

4. preliminary steps towards the application of vineyards to the study of protein folding
trajectories;

5. an algorithm to compute the rank invariant of a bifiltration [18] in quadric time.
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Similar to [75], our aim in the application is to learn about protein folding by viewing the
process through a quantifiable combinatorial lens. The preliminary results are encouraging
and will hopefully lead to a broader and deeper investigation of the subject. To illustrate
the utility of the dynamic treatment of a filtration presented in Section 4.2 we give an
elementary algorithm to compute the recently introduced rank invariant of a bifiltration
[18] in time quadric in the number of simplices.

Stacking up persistence diagrams. We consider a homotopy F (x, t) : X × [0, 1] → R,
and denote its snapshot at a given time-slice by ft(x) = F (x, t). Assuming every ft
is tame, we have a dimension p persistence diagram for every t and p, and the Stability
Theorem relating the various diagrams. We draw Dgmp(ft) in the (extended) plane x3 =
t in R̄3 thus getting a 1-parameter family of diagrams which we call the dimension p
vineyard Vnrdp(F ). Each off-diagonal point in Dgmp(ft) moves in time, tracing out a
curve we refer to as a vine. Each vine is either open (starting and ending on the diagonal
plane, x1 = x2), half-open, or closed (starting at an off-diagonal point in x3 = 0 and
ending at an off-diagonal point in x3 = 1). If the homotopy is smooth then so are the
vines, except when the pairing of critical values changes. We call such points knees and
observe that they come in pairs. In practice, homotopies of functions arise from time-
series data, given as a sequence of frames which are snapshots of the data at successive
moments in time. Naturally, an assumption needs to be made about how the function
changes in between the available frames. Ideally, such an assumption reflects the change
in the underlying phenomenon described by the function, but in the absence of any such
assumption it is convenient to use the straight-line homotopy between the frames.

Construction. We revisit the two types of functions that we discussed in Chapter 2: dis-
tance functions to point sets and piecewise linear functions.

A homotopy of the distance functions arises naturally if the underlying point set moves
continuously. We recall that in this case the function č(σ) that determines the order of sim-
plices in the Čech filtration is equal to the radius of the smallest sphere enclosing simplex
σ. It changes continuously to give us the homotopy čt(σ). Furthermore, if the points move
at constant speeds in straight lines (for example, if we are interpolating between the snap-
shots of data), then the homotopy čt(σ) can be described by piecewise rational curves. The
degrees of numerator and denominator polynomials are bounded by the dimension of the
ambient space plus one, see [34] for explicit formulas for such radii. The continuous, but
not necessarily smooth breaks occur between different pieces when the supporting point
set of the enclosing sphere of the given simplex adds or loses a point.

A homotopy of piecewise linear functions arises when we interpolate between two
snapshots f0 and f1 of the function. If vertices follow a straight-line homotopy ft(v) =
λf1(v) + (1− λ)f0(v), then the order of the simplices in the lower star filtration is deter-
mined by function ft(σ) = maxv∈σ ft(v). The simplices exchange places when the order
of their maximal vertices changes.

In both cases the value assigned to any given simplex follows a continuous rational
function. The order of the simplices in the filtration changes when two such trajectory
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functions cross. To construct the vineyards we first compute the persistence diagram of the
initial filtration, which we then update through a sequence of transpositions, as explained
in Section 4.2. We generate this sequence by sweeping the arrangement of the piecewise
rational functions Pσ : [0, 1]→ R defined by Pσ(t) = čt(σ) and Pσ(t) = ft(σ) in the two
cases respectively, as illustrated in Figure 4.1. This sweep can be viewed as performing

0 1

Pσ(0)
Pσ(1)

Figure 4.1: Sketch of the arrangement formed by piecewise rational curves representing
trajectories of the simplices.

a kinetic sort of the simplices. See [8, 9] for discussion of the framework of kinetic data
structures. To maintain persistence diagrams we are interested in updating R = DV
decomposition from Section 2.2 which gives us the pairing after two consecutive simplices
transpose during the kinetic sort.

4.2 Updating the Pairing
In this section, we present the algorithm that updates the pairing function under a transpo-
sition of two simplices in the filtration. We begin with a characterization of the persistence
pairing in terms of ranks of submatrices of the incidence matrix.

Uniqueness of pairing function. Let R be a reduced 0-1 matrix as defined in the Section
2.2, and write Rj

i for the lower left minor obtained by deleting the first i− 1 rows and the
last m − j columns. Any combination of non-zero columns of Rj

i has its last non-zero
entry at the same height as the lowest non-zero entry of any of the involved columns. The
combination can therefore not be zero implying that the combined non-zero columns are
linearly independent. Recall from Section 2.2 that the algorithm in [39] can be interpreted
as computing the reduced matrix R = DV , where V is invertible and upper-triangular.
Since invertible upper-triangular matrices form a group, we can write D as the product
RU of the reduced matrix R and the invertible upper-triangular matrix U = V −1. When
given choice, we prefer D = RU decomposition over R = DV since in applications
matrix U is usually much sparser than matrix V . We call such a decomposition an RU-
decomposition ofD. In this decomposition, positive simplices correspond to zero columns
and negative simplices to non-zero columns in R. Define

rD(i, j) = rankDj
i − rankDj

i+1 + rankDj−1
i+1 − rankDj−1

i .
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We prove below that the pairing function can be expressed in terms of rD and is thus
independent of the particular RU-decomposition used to define it.

PAIRING UNIQUENESS LEMMA. Letting D = RU , we have lowR[j] = i if and only
if rD(i, j) = 1. In particular, the pairing function does not depend on the matrix R in the
RU-decomposition.

PROOF. Note that adding columns to columns located to their right does not change
the rank of lower left minors, so rD = rR. To prove the claim, it is thus sufficient to
show that lowR[j] = i iff rR(i, j) = 1. First assume lowR[j] = i. As argued above,
the non-zero columns of Rj

i are linearly independent. The last column is non-zero, so
rankRj

i − rankRj−1
i = 1. Now if we delete the top row from Rj

i then the last column
is zero, implying rankRj

i+1 − rankRj−1
i+1 = 0, as required. Second assume lowR[j] 6= i

and consider Rj
i and Rj

i+1. If lowR[j] < i the last columns in both matrices are zero and
we have rankRj

i = rankRj−1
i as well as rankRj

i+1 = rankRj−1
i+1 . If lowR[j] > i the

last columns in both matrices are non-zero and we have rankRj
i = rankRj−1

i + 1 and
rankRj

i+1 = rankRj−1
i+1 + 1. In both cases the claimed result follows.

Performing a transposition. To swap the simplices in positions i and i+ 1, we exchange
rows i and i+1 as well as columns i and i+1 in D. The new incidence matrix is therefore
PDP , where P is the permutation matrix that swaps i and i + 1. To update the pairing
function, we just need to repair the RU-decomposition, which we now show how to do in
time O(m). In Chapter 6 we will need to maintain R = DV decomposition, so we also
state explicitly how to update matrix V . Only one pair R and U , or R and V needs to be
maintained in any given application. We have PDP = PRUP = (PRP )(PUP ), but this
is not necessarily an RU-decomposition. Similarly, PRP = (PDP )(PV P ) may violate
the conditions on matrices R and V . As illustrated in Figure 4.2, PRP is not reduced iff
there are columns k and l with lowR[k] = i, lowR[l] = i + 1, and R[i, l] = 1. We note
that since U = V −1 and both are upper-triangular, V [i, i + 1] = U [i, i + 1]. Therefore,
PUP and PV P are not upper-triangular iff U [i, i+ 1] = V [i, i+ 1] = 1. We may assume

1

1

1

1 1

1

i + 1

i

k lkl

R PRP

1

1

1

1

1

1

U or V PUP or PV P

i i + 1 i i + 1

Figure 4.2: The transposition renders this particular R non-reduced and these particular U
and V non-upper-triangular.

that the algorithm adds only columns that belong to simplices of the same dimension. The
two cases illustrated in Figure 4.2 therefore arise only if the simplices at positions i and
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i+ 1 have the same dimension, which we thus assume. In all other cases, PRP is reduced
and PUP and PV P are upper-triangular. In the following case analysis we denote by Slk
the upper-triangular matrix such that multiplying by it on the right is equivalent to adding
column k to column l. In turn multiplying by it on the left implies adding row l to row k.
We observe that all such matrices Slk are idempotent, i.e. SlkS

l
k = I .

Case 1 Both i and i + 1 are positions of positive simplices. Since column i in R is zero
we may set U [i, i+ 1] = V [i, i+ 1] = 0, if this is not the case. It follows that PUP
and PV P are upper-triangular and we only need to consider PRP .

Case 1.1 There are columns k and l with lowR[k] = i, lowR[l] = i + 1, and
R[i, l] = 1.

Case 1.1.1 k < l, as in Figure 4.2, left. To reduce PRP , we add column k
to column l. Matrix Slk performs this operation, and we have PDP =
(PRPSlk)(S

l
kPUP ). Similarly, PRPSlk = (PDP )(PV PSlk). By con-

struction, PRPSlk is reduced. Furthermore, adding row l to row k pre-
serves PUP as an upper-triangular matrix much like adding column k to
column l preserves PV P as upper-triangular. It follows that this is an
RU-decomposition of the new incidence matrix.

Case 1.1.2 l < k. To reduce PRP , we add column l to column k on its right.
We have PDP = (PRPSkl )(Skl PUP ) as an RU-decomposition, same as
Case 1.1.1, and, similarly, PRPSkl = (PDP )(PV PSkl ).

Case 1.2 There are no columns k and l as in Case 1.1. Then after transposition
PDP = (PRP )(PUP ) is an RU-decomposition, and PV P also requires no
update.

Case 2 Both i and i+ 1 are positions of negative simplices. In this case, rows i and i+ 1
cannot contain the lowest 1s of any columns. It follows that PRP is reduced and
we only need to consider PUP and PV P .

Case 2.1 U [i, i + 1] = V [i, i + 1] = 1, as in Figure 4.2, right. To make the sec-
ond matrix in the decomposition upper-triangular, we add row i + 1 of U to
row i, equivalently column i of V to column i + 1. Matrix Si+1

i performs
this operation, we have PDP = (PRSi+1

i P )(PSi+1
i UP ), and PRSi+1

i P =
(PDP )(PV Si+1

i P ). The effect of Si+1
i on R is it adds column i to column

i+ 1.

Case 2.1.1 lowR[i] < lowR[i+ 1]. Then RSi+1
i as well as PRSi+1

i P are
reduced and we have an RU-decomposition.

Case 2.1.2 lowR[i+ 1] < lowR[i]. Then RSi+1
i is not reduced, but we can

reduce it by adding column i+ 1 to column i. After the transposition, this
is adding column i of RSi+1

i P to column i+ 1 and we get

PDP = (PRSi+1
i PSi+1

i )(Si+1
i PSi+1

i UP )
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PRSi+1
i PSi+1

i = (PDP )(PV Si+1
i PSi+1

i ).

The updated matricesU and V are upper-triangular and the updated matrix
R is reduced, as illustrated in Figure 4.3, top row.

Case 2.2 U [i, i + 1] = V [i, i + 1] = 0. Then PDP = (PRP )(PUP ) is an RU-
decomposition, and PV P also requires no update.

Case 3 i is the position of a negative simplex and i+1 is the position of a positive simplex.

Case 3.1 U [i, i+ 1] = V [i, i+ 1] = 1, as in Figure 4.2, right. Just like in Case 2.1,
we add row i + 1 of U to row i and get PDP = (PRSi+1

i P )(PSi+1
i UP ) and

PRSi+1
i P = (PDP )(PV Si+1

i P ). The updated matrices U and V are upper-
triangular. However, the updated matrix R is not reduced, and we reduce it by
adding column i of RSi+1

i P to column i+ 1, giving

PDP = (PRSi+1
i PSi+1

i )(Si+1
i PSi+1

i UP )

PRSi+1
i PSi+1

i = (PDP )(PV Si+1
i PSi+1

i )

as the final decompositions; see Figure 4.3, bottom row.
Case 3.2 U [i, i + 1] = V [i, i + 1] = 0. Then PDP = (PRP )(PUP ) is an RU-

decomposition, and PV P also requires no update.

Case 4 i is the position of a positive simplex and i+1 is the position of a negative simplex.
This is the reverse of Case 3.2. Indeed we set U [i, i + 1] = V [i, i + 1] = 0 if this is
not the case and get the RU-decomposition PDP = (PRP )(PUP ).

i i + 1 i i + 1i i + 1 i i + 1

R RSi+1
i RSi+1

i P RSi+1
i PSi+1

i

1 1 1 1 1 1

1

1

0 1 1 1 1 1 0

11/01/0 0/11/00/10/1

Figure 4.3: Evolutions of R to RSi+1
i PSi+1

i , in Case 2.1.2 on top and in Case 3.1 on
bottom.

Changes in pairing. There are four cases in which the pairing function changes, all
illustrated in Figure 4.4. We summarize them in the following theorem.
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Figure 4.4: On the top left we see Case 1.1.2 and, if read backwards, Case 2.1.2. On the
bottom left we see a particular setting in Case 1.2. On the right we see Case 3.1.

PAIRING CHANGE THEOREM. After the transposition of two consecutive simplices
with indices i and i + 1, the pairing function may change only if the dimension of the
simplices is the same. The pairing changes if and only if:

Case 1a i = lowR[k] < i + 1 = lowR[l] < l < k,R[i, l] = 1, in which two nested
intervals swap their left endpoints to remain nested. This is Case 1.1.2 in the above
analysis.

Case 1b1 i + 1 = lowR[l], R[i, l] = 1, and there is no k with i = lowR[k], in which
an infinite and a nested finite intervals switch their left endpoints to remain nested.
This is a possibility in Case 1.2 above.

Case 2 lowR[i+ 1] < lowR[i] < i < i + 1, U [i, i + 1] = V [i, i + 1] = 1, in which
two nested intervals swap their right endpoints to remain nested. This is Case 2.1.2
above.

Case 3 R[i] 6= R[i+ 1] = 0, U [i, i+ 1] = V [i, i+ 1] = 1, in which two disjoint intervals
swap their near endpoints to remain disjoint. This is Case 3.1 above.

In Cases 1a and 1b of the theorem the simplices responsible for the births of two vines
in the same vineyard switch their roles giving us Type 1 switch and two knees in the
same vineyard. In Case 2 the simplices responsible for the deaths of two vines in the
same vineyard switch their roles giving us Type 2 switch and again two knees in the same
vineyard. However, in Case 3 one of the switching simplices is responsible for the death of
a vine, while the other one for the birth of a vine in the vineyards of contiguous dimension.
We refer to this switch as Type 3, and observe that the two knees belong to the vineyards
of contiguous dimension.

A trivial corollary of the above theorem, which we used in Chapter 3, is the following.

NESTED-DISJOINT COROLLARY. After transposition of two consecutive simplices of
the same dimension, their persistence pairing may switch only if their persistence intervals
are either nested or disjoint.

1 The author would like to thank Samuel Hornus for pointing out that [29] forgets to highlight this case.
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See Figure 4.4 for an illustration.

Running time. In every case, a transposition triggers at most one row exchange, one
column exchange, and two column additions in the matrix R. Symmetrically, there are at
most one column exchange, one row exchange, and two row additions in U or two column
additions in V . This takes time at most linear in the number of simplices.

In all applications we have encountered, R, U and V are sparse and we can save time
and storage using a sparse matrix implementation. We explain such a data structure for
R consisting of two linear arrays, one for the set of columns and one for the set of rows,
and a singly linked list for each column, as sketched in Figure 4.5. The j-th element of
the column array points to the linked list of 1s in the column. The i-th element in the
row array represents the i-th row in the original row sequence and stores its index in the
current row sequence. We also store the reverse link, from the current row back to its
corresponding original row. Each node in a linked list stores its index in the original row
sequence, which we interpret as a pointer into the row array. To exchange two columns,

1

1

1

1

1

Figure 4.5: The sparse matrix representation of R sketched by showing the row and col-
umn arrays and the linked lists of two columns.

we swap their pointers (lists), which takes only constant time. To add a column to another,
we merge the two lists, deleting nodes that come in duplicates, and substitute the result for
the second column. This takes time proportional to the number of 1s in the two columns
as long as the lists are consistently sorted. We achieve this by protecting the lists from row
exchanges, keeping them sorted with respect to the original row indices. A row exchange
thus only updates the correspondence between the original and the current orderings of the
rows, which takes only constant time.

We use the same data structure for storing matrix V , and a symmetric sparse matrix
data structure preferring rows over columns for U . The result is an implementation that
takes storage proportional to m plus the number of 1s in R and in V or U . The amortized
time for each operation is at most proportional to the number of 1s in the affected rows
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and columns. The worst-case time is O(m) per update, as before, but in our experiments
the average update time is about constant.

4.3 Stability of Persistence Diagrams
In this section we give an elementary proof of the Stability Theorem.

Let f, g : X → R be continuous functions, K a simplicial complex, and Φ a home-
omorphism from the underlying space of K to X. The function f̄ : K → R that maps
each simplex σ ∈ K to f̄(σ) = maxx∈σ f(Φ(x)) is a piecewise constant approximation
of f that allows us to construct a filtration on K suitable for the persistence algorithm in
Section 2.2. Similarly, ḡ(σ) = maxx∈σ g(Φ(x)) is a piecewise constant approximation of
g.

COMBINATORIAL STABILITY THEOREM. For functions f̄ , ḡ : K → R and any di-
mension p, the bottleneck distance between the two dimension p persistence diagrams
satisfies dB(Dgmp(f̄),Dgmp(ḡ)) ≤ ‖f̄ − ḡ‖∞.

PROOF. Consider the straight-line homotopy f̄t(σ) = (1 − t)f̄(σ) + tḡ(σ), and note
that f̄t allows to construct a filtration for each 0 ≤ t ≤ 1. Let t1 to tk be the values
at which the ordering of the simplices changes by one or several transpositions, and set
t0 = 0 and tk+1 = 1. Let ti ≤ r < s < ti+1, for any 0 ≤ i ≤ k, and consider a
pair of simplices, (σ, τ), defined for the ordering that exists during the open time interval.
Then ur = (f̄r(σ), f̄r(τ)) is a point in Dgmp(f̄r) and us = (f̄s(σ), f̄s(τ)) is a point
in Dgmp(f̄s). The Manhattan distance between the two points is the larger of the two
coordinate differences, which implies

dB(Dgmp(f̄r),Dgmp(f̄s)) ≤ ‖f̄r − f̄s‖∞
= (s− r) · ‖f̄ − ḡ‖∞.

A transposition changes the pairing but it does not affect the persistence diagram. Hence,

dB(Dgmp(f̄),Dgmp(ḡ)) ≤
k∑
i=0

dB(Dgmp(f̄ti),Dgmp(f̄ti+1
))

≤ ‖f̄ − ḡ‖∞
k∑
i=0

(ti+1 − ti).

The latter sum is 1, which implies the claimed inequality.

As mentioned in Section 2.5, the persistence diagrams of the piecewise constant maps
f̄t are the same as those of the piecewise linear maps defined by the same values at the
vertices. The theorem thus implies the stability of persistence diagrams for the class of
piecewise linear functions.
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The original proof of Stability Theorem in [25] extends the proof of stability for piece-
wise linear functions to continuous functions defined on triangulable spaces. The exten-
sion works by taking arbitrarily fine triangulations of the domain to approximate the given
function; it is described in the “Finale” paragraph of Section 3.3 in [25]. The argument
applies directly to the Combinatorial Stability Theorem extending it to the usual Stability
Theorem as stated in Section 2.2.

4.4 Applications
We illustrate the concepts introduced in this chapter by first computing a sequence of
vineyards for the folding trajectory of a protein. They are generated by a piecewise linear
function on a fixed triangulation, which is a common situation we encounter in applica-
tions. Then we show how to compute the rank invariant of a bifiltration in time O(m4).

4.4.1 Peptide Folding

Folding trajectories. The question of how proteins fold is a grand challenge in molecular
biology and only modest progress has been reported in the last decades. It appears that
the scientific community has not yet succeeded in simulating the folding process computa-
tionally. Exceptions are very short sequences or simulations over very short time intervals.
We feel that vineyards can be useful in understanding the few folding trajectories that have
been computed. One such trajectory describes the simulated folding motion of BBA5, a
short peptide of N = 23 amino acids [73]. The trajectory is given as n + 1 = 201 frames
covering a total of 40 picoseconds at regular intervals of 200 femtoseconds. For each
0 ≤ i ≤ n, the i-th snapshot is a configuration of this backbone represented by a sequence
Si of N points in R3, each the center of an alpha carbon along the backbone; see Figure
4.6. We turn the folding trajectory into vineyards using a 1-parameter family of functions
described below.

Pairwise distance. Given a curve b : [0, 1]→ R3 in space, the pairwise distance function
[0, 1]2 → R is defined by mapping (r, s) to ‖b(r)− b(s)‖. Each function we consider
is a piecewise linear approximation of such a pairwise distance function defined by the
corresponding backbone configuration. We need some notation. Recall that Si is the
sequence of points describing the i-th backbone and let ci,j be the j-th point in Si, for 1 ≤
j ≤ N . Let K be the triangulation of [1, N ]2 obtained by connecting contiguous integer
points along common horizontal, vertical, and 45-degree lines. It consists of N2 vertices,
(3N −1)(N −1) edges, 2(N −1)2 triangles, and therefore of m < 6N2 simplices in total.
For each 0 ≤ i ≤ n, we construct fi : [1, N ]2 → R by defining fi(j, k) = ‖ci,j − ci,k‖ and
extending the values at the vertices by linear interpolation over the edges and triangles. To
form a homotopy from f0 to fm that passes through all intermediate functions, we finally
define fi+λ = (1− λ)fi + λfi+1, for all 0 ≤ i < n and all 0 ≤ λ ≤ 1.
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B

Figure 4.6: Top: snapshot 0, the initial backbone. Lower left: snapshot 68, the alpha helix
is complete. Lower right: snapshot 200, the final backbone.

To construct the vineyards, we first compute the persistence diagrams of f0, which
we then update through a sequence of transpositions, as explained in Section 4.2. We
generate this sequence by sweeping the arrangement of polylines Pjk : [0, n]→ R defined
by Pjk(t) = ft(j, k), as illustrated in Figure 4.7. We have N2 polylines with at most n

0 1 2 n− 2 n

Figure 4.7: Sketch of the arrangement formed by the N2 polylines representing the varia-
tion of function value at the vertices of K.

crossings between each pair. Each crossing corresponds to a transposition of two vertices.
Using a standard plane-sweep algorithm, we can compute the ordered sequence in time
O(logm) per crossing. The resulting algorithm takes worst-case time O(nm3) to construct
the vineyards. In practice, the algorithm runs significantly faster, first because nm2 is a
gross over-estimate of the usual number of crossings, and second because our sparse-
matrix implementation takes only about constant time per update.

Discussion of the vineyards. The results are illustrated in Figure 4.8, which shows the
dimension 0 and 1 vineyards of the pairwise distance function. Each vine is drawn twice,
as viewed from the front (normal to the diagonal direction) and from the side (along the
diagonal direction). To interpret Figure 4.8, we fix a value t ∈ [0,m] and consider a
horizontal cross-section at height t. We note that two points (r, s) and (v, w) belong to a
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Figure 4.8: The front view (x+y, t) and the side view (y−x, t) of the dimension 0 vineyard
on the left and the dimension 1 vineyard on the right. The side views are simplified by
removing vines with lifetime less than 20 frames.

common component of the sublevel set f−1
t [0, α] iff the component contains a path from

the first point to the second. In other words, we can continuously move point b(r) to
b(v) and simultaneously b(s) to b(w), both along the backbone b, such that the distance
is less than or equal to α at all times. For α = 0, the sublevel set consists of a single
component, the diagonal of the domain. As we increase α, we see new components start
at off-diagonal minima and components merge at saddles of ft. The first critical points
with non-zero value appear at α between 5 and 6 Å, causing the characteristic gap of
about twice 5.5 Å to the time axis in the front views of the vineyards. The gap becomes
particularly well defined when the alpha-helix is formed, suggesting the gap measures the
distance between two alpha carbons separated by a single turn of the helix.

The dimension 1 vineyard is somewhat more difficult to interpret. It helps to break
the folding process into three stages, the first from Frame 0 to 68, the second from 68 to
170, and the third from 170 to 200. The first stage is characterized by large and seemingly
chaotic motions of the backbone that precipitate in vines across a relatively wide range
of scales visible in the front view, both for the dimension 0 and 1 vineyards. At the end
of the first stage, an alpha helix forms and the backbone assumes a rough S-shape, which
remains until the end of the second stage. Covering almost the same time interval, we
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see a dimension 1 vine emerging from the diagonal at Frame 66 and surviving until the
Frame 178 when it disappears into the diagonal. There are 59 knees on this vine, and its
maximum persistence (distance from the diagonal which is visible in the side view) is less
than 6Å and at times drops well below 1Å. Nevertheless, the vine is very long-lived which
suggests that even subtle configurations can stay around for a while. Let us take a closer
look at this long vine representing a cycle created at a saddle and destroyed at a maximum.
While the atom pairs responsible for the saddle and the maximum (AC and AB in Figure
4.6 for Frame 68) change as the vine evolves, they always span the tail of the backbone
which remains intact during the second stage. Figure 4.9 shows the graph of the function
together with a cycle in the homology class of the feature. During the third stage, we see
the tail of the S-shape turn around and point back to the alpha helix. In the dimension
1 vineyard, we see three vines of persistence up to 5Å emerge from the diagonal shortly
after Frame 178 and survive until the end, at Frame 200.

Figure 4.9: Pairwise distance function for Frame 68 of the BBA5 folding trajectory. The
highlighted cycle is destroyed by the marked maximum and belongs to the homology class
responsible for the long-lived vine.

In conclusion, we note that the folding process is very complex and it seems difficult
to agree on when exactly events begin and end. This is in sharp contrast to a vine, which
is unambiguously associated to a feature and has a precisely defined beginning and end.
Furthermore, at any moment in time, the scale and the persistence of that feature are quan-
titatively expressed by the coordinates of the corresponding point on the vine. We thus
believe that vines can be used to objectively and quantitatively encapsulate events in the
process described by a homotopy.
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4.4.2 Rank Invariant
Carlsson and Zomorodian [18] consider the invariants that arise for a multi-filtration of
simplices. They propose to investigate the rank invariant which generalizes persistent ho-
mology; we briefly review it below. The main goal of this section is to give an elementary
algorithm that uses the linear time update described in Section 4.2 to compute the rank
invariant in quadric time.

Given a simplicial complex K, suppose each simplex in the complex is assigned in-
jectively two indices f(σ) = (i, j), each in range [1,m], where m is the cardinality of
K. The indices may for example come from ordering the simplices with respect to two
different functions, and considering their sublevel sets. Furthermore, suppose the indices
assigned to any face are pairwise smaller than the indices assigned to its coface; in other
words, the simplices form a filtration with respect to each index. We define the sublevel set
Ki,j = {σ | f(σ) = (i′, j′) and i′ ≤ i, j′ ≤ j}. Considering the homology groups of the
sublevel sets, we call the collection of ranks of their images induced by inclusion the rank
invariant of the bifiltration. In symbols, RI(f, g) = {rank H(Ki′,j′)→ H(Ki,j) for all i′ ≤
i, j′ ≤ j}.

The collection of sublevel sets Ki,j can be represented as an m-by-m matrix. To see
how, we record each simplex σ in row i, column j of the matrix if f(σ) = (i, j). Each sub-
level set is the union of the simplices in the upper-left submatrix with the lower right corner
(i, j), see Figure 4.10. Ordering simplices according to any monotonically increasing path

1

m

1 m

σ2

σ4

σm

σ3

σ1

i

j

Figure 4.10: Representation of a bifiltration of a simplicial complex. Sublevel sets that
contain a simplex are marked with dotted lines and have that simplex in the upper-left
corner. (i, j)-path through the filtration is shown with a solid line.

from cell (1, 1) through the matrix to the cell (m,m) gives us a filtration of simplices.
Computing persistence of this filtration provides the ranks of maps induced by inclusion
of any sublevel set into any other sublevel set on the path.

We consider all the paths starting at cell (1, 1) that move i steps to the right, j steps
down, then (m − i) steps to the right, and (m − j) steps down. We call such a path an
(i, j)-path. We observe that from the (i, j)-path one can read ranks of all maps of the form
H(Ki,∗)→ H(K∗,j). We also note that the filtrations defined by paths (i, j) and (i+ 1, j),
or symmetrically (i − 1, j), (i, j + 1), or (i, j − 1), differ by a single simplex changing
its position in the order. We can model such a move by at most m transpositions of
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consecutive simplices, which in turn takes quadratic time to update the filtration. Since
there are m2 (i, j)-paths, we can iterate through them by changing the value of i or j by
at most one per step, and the rank of the map between any pair of sublevel sets can be
read off from the persistence pairing of such a path, we can compute the rank invariant in
quadric time.

The above construction naturally extends to a multi-filtration of k functions. Using the
same procedure we can compute its rank invariant in time O(mk+2).

4.5 Discussion
We conclude with a small number of questions aimed at improving and extending the
results presented in this chapter.

• Are there variants of the update algorithm that are more efficient than the one de-
scribed in Section 4.2 or that are simpler and just as efficient? For example, can
we update the pairing by only maintaining the reduced matrix, R, and not the ma-
trix U that does the reducing? Is there an advantage in treating rows and columns
differently or is the symmetric version more efficient?

• In many applications, the points in the persistence diagram further away from the di-
agonal are more important than the points close to the diagonal. Can we use or adopt
the update algorithm to compute the points with persistence beyond some threshold
without spending time on the others? We desire an algorithm whose running time
depends only on the size of the output it produces and not on the size of the entire
diagram.

• Vineyards trace critical values and do not require any notion of critical points. How-
ever, when critical points are available, such as for smooth and for piecewise linear
functions on manifolds [7, 62], we can use the update algorithm to maintain their
association with the points in the persistence diagram. Can we exploit this ability to
gain a better understanding of the stability or instability of critical points? In partic-
ular, can this ability be developed into a global alignment algorithm for shapes that
is more general and more reliable than what is currently available [46, 55]?

Finally, we would like to suggest that vineyards should not be limited to homotopies but
rather considered an analysis and visualization tool for parametrized families of functions.
A point in case is the elevation function [2] whose maxima have been useful in coarse
protein docking [79]. For a surface M in space, this function is based on the sphere of
height functions, which provide a homotopy F : M × S2 → R. The elevation function
can be constructed from the S2-parametrized vineyard of this homotopy. For a piece-wise
linear surface with m simplices, elevation function can be computed using the update
procedure of Section 4.2 in time O(m5).

In the next chapter we explore vineyards of a parametrized family of functions on a
ball to infer local homology of a sampled space.
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Chapter 5

Local Homology

5.1 Introduction
Much of the progress in today’s experimental sciences is predicated on the ability to collect
larger sets of more accurate measurements faster. Each data element is a tuple interpreted
as a point in a space of the appropriate dimension. The resulting point set is often referred
to as a point cloud so we are reminded that there is a lot of accumulated data. The main
task is to detect patterns and to infer properties of the measured process from the structure
of the point cloud.

Motivation. A common phenomenon in experimental measurements is that the data ap-
pears to describe a space whose intrinsic dimension is significantly smaller than that of the
ambient space Rn. This statement needs some clarification since every finite point set is,
by definition, zero-dimensional. What we mean is that there is a relatively simple subset
X ⊆ Rn of dimensionm� n such that all data points lie on or near this subset. The reason
for this phenomenon is perhaps self-inflicted by our inability to make sense of processes
that depend on a large number of independent parameters. The problem of reconstructing
this subset (or one such subset from the class of possibilities) is often referred to as mani-
fold learning [13]. The name betrays the tacit assumption that the subset is thought to have
the topological structure of a manifold. In other words, it is locally homeomorphic to Rm,
or possibly to the m-dimensional half-space if we allow the manifold to have boundary. In
case this assumption is grossly false it is suggested that these violations are artifacts of the
mapping into the ambient space.

Similar to [51], we take a deliberate departure from the manifold assumption. While
their methods are statistical in nature, we use local homology to recognize locations where
the assumption is violated. Specifically, based on the joint work with Paul Bendich, David
Cohen-Steiner, Herbert Edelsbrunner, and John Harer [11], we consider samplings of
spaces that are partitioned into strata, each a manifold of dimension m or less, and we
focus on the characterization of how these strata connect to each other. Stratified spaces
can be described relatively compactly while significantly generalizing the class of spaces
beyond manifolds. They include smooth images of manifolds into Rn and permit different
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local dimensions at different locations, but they do not include sets of fractal dimension.
Since our goal is to deal with scientific data, the inability to describe fractal behavior might
be considered a serious drawback. We argue otherwise, delegating the expression of frac-
tal or chaotic behavior to the multi-scale description of the data. While this is not yet
addressed in this thesis, we lay the foundations by parametrizing all our results in terms of
scale parameters.

Results and prior work. Stratified spaces have been studied extensively in the mathemat-
ical literature [48, 81]. Particularly relevant to the line of work presented in this chapter
is the development of intersection homology [47] and of persistence for intersection ho-
mology [12]. There is a striking paucity in computational studies of the reconstruction
of stratified spaces from point samples which testifies for the technical difficulties caused
by the presence of singularities. In general, the reconstruction of spaces from point sam-
ples is an important topic in a number of fields, each putting its own emphasis on the
subject. Computer graphics and visualization stresses fast algorithms inspired by work in
numerical analysis and image processing and focuses on data that describes surfaces in R3

[54, 80]. Computational geometry favors combinatorial algorithms based on Delaunay tri-
angulations [33] and provides proofs of correctness under assumptions of dense sampling
[3, 20]. Machine learning uses statistical methods to study high-dimensional data that de-
scribes relatively low-dimensional manifolds [10, 65]. Finally, topological data analysis
relies on algebraic methods to reveal the topological structure of high-dimensional data
[76]. In this chapter we combine characteristics found in computational geometry and in
topological data analysis:

• we turn the algebraic concept of local homology into a multi-scale notion by con-
structing extended series of homology groups;

• we describe the (α|r)-vineyard, which we introduce as a practical tool for studying
the local homology of a sampled space;

• we explain how the (α|r)-vineyard expresses the local homology of the sampled
space at a point and prove the relation under the assumption of a dense sampling;

• we give an algorithm that computes the (α|r)-vineyard of a point cloud in time cubic
in the number of simplices in the Delaunay triangulation.

Stratified Spaces. While the methods in this chapter apply to any compact subset of the
Euclidean space, we are particularly interested in stratified spaces, which we introduce in
the rest of this section. This interest mirrors the belief that this class of spaces is both com-
putationally tractable and provides greater insight into data than its manifold interpretation
alone.

Recall that a topological m-manifold is a space M such that every point z ∈ M has a
neighborhood homeomorphic to Rm. If a space fails to be a manifold, it is because of the
existence of singular points where no such neighborhood exists. For example, the figure-8
is not a 1-manifold; the singular crossing point has no neighborhood homeomorphic to R.
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On the other hand, every other point has such a neighborhood; in other words the figure-8
minus the crossing point is a 1-manifold and the crossing point itself is a 0-manifold. In
general, a stratification of a topological space X is a filtration by closed subsets,

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xm−1 ⊆ Xm = X,

such that Xi−Xi−1 is a (possibly empty) i-manifold for each i. The set Xi−Xi−1 is called
the i-stratum and its components are the dimension i pieces of X.

Local structure. The above definition does not require that the points on a piece have
similar neighborhoods outside the piece. Such requirements are usually added by extra
conditions. Although there are many different conditions that might be added, each with
its own subtleties [56], the following will do for our purpose. A stratified space X ⊆ Rn

with the above stratification is a cs-space if every point x ∈ Xi−Xi−1 has a neighborhood
in X homeomorphic to the product of an open i-ball in Xi − Xi−1 and the open cone on
a compact topological space. The homeomorphism is assumed to take the product of the
open i-ball and the cone point to the intersection of the neighborhood with Xi. This is
illustrated in Figure 5.1 where X is a torus with one of the meridian circles pinched to a
point and a disk stretched taut across its tunnel. If we remove the boundary circle of the

Figure 5.1: A 2-dimensional cs-space. The neighborhood of the pinch point x and of an-
other point y along the boundary circle of the disk are highlighted. The two neighborhoods
are not homeomorphic but they have the same homotopy type and therefore isomorphic
homology groups.

disk, we disconnect X and obtain a 2-manifold. The removed circle itself is a 1-manifold.
However, the local structure is not uniform throughout the circle as the pinch point has
a different neighborhood than any other point on the circle. Clearly, the pinch point is
distinguishable from any other point on the circle.

For a cs-space, the cone in the definition of the neighborhood at a point x depends
only on the piece that contains x. Since this piece is itself a manifold, the open balls
are also homeomorphic. Hence the condition on the neighborhoods enforces exactly the
requirement that each point in a piece has the same local structure in X.
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Connection with local homology. We note that the filtration in the definition of the strati-
fied space is not unique. However, there is a natural coarsest filtration [50] which consists
of the components in the partition of X defined by calling points x and y equivalent if there
exist neighborhoods of x and y and a homeomorphism between these neighborhoods that
maps x to y. Any cs-space meets this condition already; for the coarsest filtration, we just
impose the converse.

Now if two points x and y have such neighborhoods, then their local homology groups
are also the same. It is the contrapositive of this statement that we hope to use in finding
the best stratification of point cloud data. In this chapter we take the first step towards
finding such stratification by considering how one could estimate the local homology of
a sampled compact space. We pursue the omniscalar paradigm discussed in Chapter 1 by
not forcing the user to choose the underlying parameters.

5.2 Local Homology and Distance Functions
In the rest of this chapter we use distance functions, introduced in Section 2.4, so we
briefly review them as well as the classical notion of local homology.

Distance, filtrations, and diagrams. Let dY : Rn → R be the distance function de-
fined by dY (x) = infy∈Y ‖x− y‖. For each real number α the corresponding sublevel
set consists of all points at distance at most α, Yα = d−1

Y [0, α]; see Figure 5.2. We call

Figure 5.2: The space Y consists of the brace on the left and the stick to its right, both
shown in bold. It is also the first sublevel set in the picture, Y = d−1

Y [0, 0]. The second
sublevel set merges the two components and creates a hole. The third sublevel set fills the
hole.

α an absolute homological regular value if there is a sufficiently small ε > 0 such that
the maps between homology groups induced by the inclusion Yα−δ ⊆ Yα+δ form a series
of isomorphisms for every 0 < δ < ε. Otherwise, α is an absolute homological criti-
cal value. We also define superlevel sets Y α = d−1

Y [α,∞), using them to define pairs
(Rn, Y α). We call α a relative homological regular value if there is a sufficiently small
ε > 0 such that the maps between relative homology groups induced by the inclusion
(Rn, Y α+δ) ⊆ (Rn, Y α−δ) form a series of isomorphisms for every 0 < δ < ε. Otherwise,
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α is a relative homological critical value. As in Section 2.2 we call a function tame if it
has finitely many (absolute and relative) homological critical values and its sublevel and
superlevel sets have finite rank (absolute and relative) homology groups.

We consider the extended sequence of absolute and relative homology groups as intro-
duced in [26],

0→H(Yα)→ . . .→ H(Rn)

→H(Rn, Y α)→ . . .→ 0, (5.1)

where α increases from 0 to infinity going up during the first half and then decreases from
infinity to 0 coming down during the second half of the sequence. We denote the series of
resulting persistence diagrams, Dgm(dY ). Following the notion of extended persistence
[26], see Section 2.2, we distinguish between classes born and dying going up, classes
born going up and dying coming down, and classes born and dying coming down. The
corresponding three types are referred to as ordinary, extended, and relative points and
they make up the ordinary, extended, and relative subdiagrams of the persistence diagram.

Figure 5.3: The persistence diagrams of the distance function in Figure 5.2. We draw time
of birth from left to right and time of death from bottom to top, each ranging from 0 to∞.
The white dots, crosses, and squares represent the ordinary, extended, and relative points
in the diagrams of dimension given by the subscripts. The shading shows quadrants and
half-planes defined by the points a = (ξ, ζ) and ā = (ζ, ξ).

To recover information from the diagrams we count points in subregions. Given a =
(ξ, ζ) we count the classes that are alive during the entire interval, on the way up or the
way down. Assuming ξ ≤ ζ this number is

#a
p(dY ) = rank (im (Hp(Yξ)→ Hp(Yζ)))

+ rank (im (Hp(Rn, Y ζ)→ Hp(Rn, Y ξ)))

− rank (im (Hp(Yξ)→ Hp(Rn, Y ξ))).

Of course we get a number for each dimension p and we write #a(dY ) for the series. To
cover the other case, when ζ ≤ ξ, we set #a(dY ) = #ā(dY ) with ā = (ζ, ξ). As illustrated
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in Figure 5.3, #a counts the ordinary points in the upper left quadrant, [0, ξ]× (ζ,∞), the
relative points in the lower right quadrant, [ζ,∞) × [0, ξ), as well as the extended points
in the union of the left and lower half-planes, [0, ξ]× R ∪ R× [0, ξ). The resulting series
for the example illustrated in Figures 5.2 and 5.3 is then #a = (. . . , 1, 2, 1, . . .), where we
only show the numbers for dimensions p = 0, 1, 2.

Local homology. Let z ∈ Rn be a point and dz : Rn → R the distance function defined
by dz(x) = ‖x− z‖. We write Br = d−1

z [0, r] and Br = d−1
z [r,∞) for the sublevel and

superlevel sets defined by r. Fix α ≥ 0 and consider Yα, the space of points at distance
at most α from Y . The sublevel sets and superlevel sets restricted to Yα are Yα ∩ Br and
Yα ∩ Br. Traditionally, the local homology groups at a point z in a space Yα are defined
to be the relative homology groups H(Yα, Yα − z) [64]. In words, a local cycle γ at z is
a chain whose boundary misses z. Additionally, the boundary of γ must also miss some
small open set Yα ∩ intBr containing z, that is, γ belongs to H(Yα, Yα− (Yα ∩ intBr)) =
H(Yα, Yα ∩ Br). Now for any s < r, we have a map H(Yα, Yα ∩ Br) → H(Yα, Yα ∩ Bs)
induced by inclusion and excision. Our local cycle γ must lie in the image of this map
for all possible choices of s. As a consequence, we see that the above definition of local
homology at a point z is equivalent to the direct limit, limr→0 H(Yα, Yα ∩ Br). To make
this a multi-scale concept we consider again the extended sequence of homology groups,

0→H(Yα ∩Br)→ . . .→ H(Yα)

→H(Yα, Yα ∩Br)→ . . .→ 0, (5.2)

where r first increases from 0 to infinity and then decreases from infinity back to 0. As
before, we record the evolution of homology classes using the thus defined series of per-
sistence diagrams, Dgm(dz|Yα). The relative subdiagrams contain the information most
directly relevant to estimating the local homology at z.

Discontinuity in α. The extended sequence of homology groups (5.2) provides a feasible
approach to assessing local homology if the space, Yα, is fixed. In the context of this
chapter, we assume that the space has not been reconstructed, and we examine it at various
scales by varying α. A drawback of the above construction is that the diagrams are not
continuous in α. To see this let 0 < a′ < a′′ be the distance thresholds of the three sublevel
sets shown in Figure 5.2. Let z be the right endpoint of the stick in Y . For α = a′ we
have a one-dimensional homology class, γ, that is born going up and dies coming down
with r. The class is represented by an off-diagonal point in the extended subdiagram of
Dgm1(dz|Ya′). In contrast, there are no one-dimensional classes for α = 0 and for α = a′′.
The class γ first appears when α reaches half the distance between the ends of the brace
and the left endpoint of the stick. Right from the start, the representing point in the diagram
is some distance away from the diagonal. Later, γ disappears when α reaches the radius
of the brace and the representing point in the diagram merges into the diagonal.
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5.3 The (α|r)-Vineyard
In this section, we introduce the main algebraic tool we use to study sampled stratified
spaces.

Two filtrations. To obtain a continuous expression of the 2-parameter variation, we swap
the order and vary α to construct the diagrams. Let z ∈ Rn, as before, but now fix r > 0.
Recall that dY : Rn → R is the distance function defined by Y ⊆ Rn. The sublevel and
superlevel sets of its restrictions to the ball of radius r around z are Yα ∩ Br and Y α ∩ Br.
Going first up with α from 0 to∞ and then down from∞ to 0 we get

0→H(Yα ∩Br)→ . . .→ H(Br)

→H(Br, Y
α ∩Br)→ . . .→ 0, (5.3)

and we write Dgm(dY |Br) for the series of persistence diagrams that records the evolution
of the homology classes in the sequence. The notion of local homology suggests we
modify the filtration (5.3) and take the homology of Yα within Br relative to Yα within the
sphere ∂Br. Constructing the extended sequence by first going up with α from 0 to∞ and
then down from∞ to 0, we get

0→H(Yα ∩Br, Yα ∩ ∂Br)→ . . .→ H(Br, ∂Br)

→H(Br, ∂Br ∪ (Y α ∩Br))→ . . .→ 0. (5.4)

The evolution of the homology classes is again recorded in the series of persistence di-
agrams, which we denote as Dgm(dY |(Br, ∂Br)). In the rest of the chapter we need a
mild assumption on Y , namely that the restrictions of its distance function to balls and to
ball-sphere pairs are tame.

Equivalence of diagrams. We now show that the two diagrams contain the same infor-
mation. Specifically, we establish isomorphisms between the homology groups in (5.3)
and (5.4) and show that the corresponding pairings are dual and thus give the same di-
agrams. To shorten the notation and clarify the relations we set X = Yα ∩ Br, decom-
pose its boundary ∂X = F ∪ G where F = Yα ∩ Y α ∩ Br and G = ∂Br ∩ Yα, and
set A = F ∩ G. Generically, X is an n-manifold with boundary, F and G are (n − 1)-
manifolds with boundary, andA is an (n−2)-manifold without boundary. Assuming tame-
ness of Y , we use excision to rewrite (5.3) and (5.4), running them anti-parallel against
each other:

→ Hn−p(X) → Hn−p(X,F ) →
⊗ ⊗

← Hp(X, ∂X) ← Hp(X,G) ←
↓ ↓

Z/2Z Z/2Z
By Lefschetz duality, the first vertical pairing is perfect. This means that the paired groups
are isomorphic and the persistence pairs in the first half of the two sequences are the same
[26]. The other vertical pairing is also perfect, but it takes a little more effort to prove this.

60



ISOMORPHISM LEMMA. For every dimension p, the intersection pairing on X induces
a perfect pairing

Hn−p(X,F )⊗ Hp(X,G)→ Z/2Z.

Hp+1(X, ∂X) → Hp(F,A) → Hp(X,G) → Hp(X, ∂X) → Hp−1(F,A)
↓ ↓ ↓ ↓ ↓

Hn−p−1(X) → Hn−p−1(F ) → Hn−p(X,F ) → Hn−p(X) → Hn−p(F )

Table 5.1: Commuting diagram with isomorphisms between the terms in the exact homol-
ogy sequence of the triple (X, ∂X,G) at the top and the exact cohomology sequence of
the pair (X,F ) on the bottom.

PROOF. First we notice that by excision, the relative homology groups Hp(∂X,G) and
Hp(F,A) are isomorphic. Next we consider the exact cohomology sequence of the pair
(X,F ), shown in the bottom row in Table 5.1, and the exact homology sequence of the
triple (X, ∂X,G),

→ Hp+1(X, ∂X)→Hp(∂X,G)→ Hp(X,G)

→Hp(X, ∂X)→ Hp−1(∂X,G)→
Replacing Hp(∂X,G) by Hp(F,A) we get the diagram in Table 5.1. Here each vertical
arrow is the Poincaré-Lefschetz duality map defined by γ → fγ where fγ(δ) = γ · δ, the
intersection number between the two classes. It is not difficult to check that this diagram
commutes. The two vertical maps on the left and the two vertical maps on the right are
isomorphisms by Poincaré-Lefschetz duality. The Steenrod Five-Lemma then tells us that
the center vertical map is also an isomorphism [64]. Finally we note that the Poincaré
duality map Hp(X,G)→ Hn−p(X,F ) being an isomorphism implies that the intersection
pairing is perfect. Indeed, every non-zero γ ∈ Hp(X,G) has at least one δ ∈ Hp(X,G)
such that fγ(δ) = γ · δ 6= 0. The claim follows.

We see that the pairings between the groups in (5.3) and (5.4) are perfect and all dia-
grams commute. It follows that if we use the superscript T to denote reflection across the
diagonal we have Dgmp(dY |Br) = DgmT

n−p(dY |(Br, ∂Br)) for all dimensions p and all
radii r.

Vineyard. An important result is that the diagrams of the filtrations in (5.3) and (5.4)
vary continuously with r. It is convenient to show this for (5.3) again using the assump-
tion of tameness. We let dB be the supremum bottleneck distance between corresponding
persistence diagrams in the series.

STABILITY LEMMA. Let Y ⊆ Rn and z ∈ Rn such that the restriction of dY : Rn → R
to any ball and any ball-sphere pair centered at z is tame. Then the bottleneck distance
between the series of persistence diagrams for two radii r ≤ r′ is

dB(Dgm(dY |Br),Dgm(dY |Br′)) ≤ r′ − r.
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PROOF. Letting f, g : Rn → R be defined by f(x) = dY (z+rx) and g(x) = dY (z+r′x),
the restrictions of dY correspond to the restrictions of f and g to the unit ball. Changing
coordinates does not affect the diagrams. Since dY is a distance function we have

|f(x)− g(x)| = |dY (z + rx)− dY (z + r′x)|
≤ ‖x‖ (r′ − r).

Since ‖x‖ ≤ 1 the difference between the two functions is ‖f − g‖∞ ≤ r′ − r. The
extension of the Stability Theorem in [25] to extended persistence as described in [26]
implies the claim.

The stability of the persistence diagram suggests we vary r within [0,∞) and describe
the homology in the neighborhood of z ∈ Rn by the resulting 1-parameter family of
persistence diagrams. Stacking up the diagrams in R3, as done in the previous chapter,
using r as the third coordinate, each point sweeps out a curve which we refer to as a
vine. Together the vines form a collection of curves which we refer to as the vineyard of
the two distance functions; see Chapter 4. Specifically, we denote the vineyard obtained
by stacking up the dimension p persistence diagrams by Vnrdp(dY |dz) and the series of
vineyards by Vnrd(dY |dz). On occasion we call this the series of (α|r)-vineyards thus
emphasizing that the diagrams are obtained by varying the threshold α for the distance to
Y while fixing the threshold r for the distance to z, and the vines are obtained by varying r.
This series of vineyards is the main technical ingredient in our approach to understanding
sampled stratified spaces.

5.4 Local Homology Inference
In this section, we follow the techniques of Cohen-Steiner, Edelsbrunner, and Harer [25],
described in Section 2.4, to prove that even with rather mild assumptions on the sampling
of a space it is possible to infer its local homology. Perhaps more important than the
guaranteed recognition is the interpretation of our result as describing the set of spaces
that can possibly give rise to the sample.

Sample. The data we consider is a finite set of points, U ⊆ Rn. It will be convenient to
index the points in this set as ui. We assume that U is sampled from or near a compact
space X ⊆ Rn. For example, X may be a compact stratified space but the existence
of a stratification will play no role in what we prove in this section. It will, however,
be important that the diagram of the restricted distance functions of X be stable. We
therefore assume that dX|Br is tame for every z ∈ Rn and every ball Br centered at z.
As mentioned earlier, this is a rather mild assumption whose violation requires infinitely
many oscillations, like in the topologist’s sine curve [64, p. 168], or similar phenomena.
Recall that the space X is unknown and the main question we ask is how much we can find
out about X under what assumptions relating U with X.
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Throughout this chapter we use a constant ε > 0 that quantifies the relation between
X and its sample. Suppose U is an ε-approximation of X. We recall from Section 2.4 that
by definition that Hausdorff distance between U and X is at most ε, i.e. ‖dU − dX‖∞ ≤ ε.

Resolution. When we refer to the local homology at a point z, we consider the family of
balls Br centered at z and for each r we study the sequence of homology groups

0→H(Yα ∩Br)→ . . .→ H(Br)

→H(Br, Y
α ∩Br)→ . . .→ 0, (5.5)

where Y is either U or X; see sequence (5.3) in Section 5.3. For each radius r > 0 we thus
consider the series of persistence diagrams Dgm(dY |Br). The only non-trivial homology
group of Br is H0 which has rank one. There is therefore only one extended point in this
series tracking the first component that appears in the filtration. To determine the local
homology of X at a point z from the sample U it is necessary that the points sample all
relevant features of the space fine enough to be recognized. To make this precise, we
consider the homological critical values of the distance function of X restricted to the ball.

DEFINITION. A radius r resolves X at z to ε if the smallest positive absolute and rela-
tive homological critical values of dX restricted to Br exceed 4ε.

ε 2ε 3ε 4ε0 ε 2ε 3ε 4ε

ε

2ε

3ε

4ε

0
0

5ε

5ε

Figure 5.4: Left: the dark regions contain the persistence diagram of dX for every radius
r ∈ RX(ε) and the light regions expand them to contain the persistence diagram of dU for
every radius r ∈ R′U(ε). Right: the light regions contain the persistence diagram of dU
for every radius r ∈ R′′U(ε) and the dark regions contain the persistence diagrams of the
distance function of Uε.

For a radius r that resolves X to ε there are no births and no deaths in the interval (0, 4ε].
In other words, the corridors separating the two boldface segments from the dark square
in Figure 5.4, left, are empty. It follows that everything born at α = 0 lives for a while
and if it dies on the way up, as α increases, then it dies strictly after 4ε. Symmetrically,
everything that dies at α = 0 must have lived for a while and if it was born on the way
down, as α decreases, then it was born strictly before 4ε. Radii that have this property
are of special interest, so we define RX(ε) as the set of radii r for which the points in
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Dgm(dX|Br) all lie in the dark portion of Figure 5.4, left, which includes the vertical
segment with lower endpoint (0, 4ε), the horizontal segments with left endpoint (4ε, 0),
and the quadrant (4ε,∞)2.

Inference. By slightly extending the notation introduced earlier, we write #a(dX|Br) for
the series of point counts of the corresponding diagrams in the region illustrated in Figure
5.3. For example, if a is the origin, then #0(dX|Br) counts the points on the horizontal
Birth-axis and the vertical Death-axis.

LOCAL HOMOLOGY INFERENCE THEOREM. Let ε > 0, X a compact space, U an ε-
approximation of X, and z a point in Rn. Then #0(dX|Br) = #(ε,3ε)(dU |Br) for every
radius r ∈ RX(ε).

PROOF. We will prove RX(ε) ⊆ R′U(ε), where the latter set consists of all radii r for
which the points in Dgm(dU |Br) all lie in the shaded portion of Figure 5.4, left, which
expands the dark regions and the diagonal by ε in the vertical as well as the horizontal
direction. We will see that this containment of sets implies the claimed equality.

Since r ∈ RX(ε) we have #0(dX|Br) = #a(dX|Br) for every a ∈ [0, 4ε]2. Since
‖dU − dX‖∞ ≤ ε, the Stability Theorem of extended persistence implies a bijection such
that each point in Dgm(dX|Br) lies within L∞-distance ε from its corresponding point in
Dgm(dU |Br). This implies that all points of Dgm(dU |Br) lie inside the ε-expanded region
depicted in Figure 5.4, left. This region consists of three disjoint subregions, one expand-
ing the vertical segment, one expanding the horizontal segment, and the third expanding
the quadrant that contains the remaining points of Dgm(dX|Br) as well as the diagonal. By
disjointness of the three subregions, the points of Dgm(dX|Br) in the two segments cannot
map to any points other than the ones in the subregions that expand them. The points of
Dgm(dU |Br) in these two subregions are counted by #a(dU |Br) with a = (ε, 3ε). This
implies the claimed equality.

Inverse. Recall that U is known but X is not. The way we hope to use the Local Homology
Inference Theorem is that we identify radii r for which the white corridors in Figure 5.4,
left, are empty. For each such r there is a chance that it belongs to RX(ε) and if it does we
know the local homology of X for this radius r. The trouble is that we can generally not
be sure that r really belongs to RX(ε). However, we can further restrict the regions that
contain the points of Dgm(dU |Br) so that they imply the existence of a space X for which
U is an ε-approximation and r is in RX(ε). Let R′′U(ε) be the set of radii r for which the
points in Dgm(dU |Br) are contained in the light shaded region in Figure 5.4, right.

INVERSE LHI THEOREM. Let ε > 0, U a subset of Rn, and z a point in Rn. Then there
exists a compact space X ⊆ Rn for which U is an ε-approximation and R′′U(ε) ⊆ RX(ε).

PROOF. Set X = Uε and note that U is an ε-approximation of X. The distance function
defined by X is dX(x) = max{0, dU(x) − ε}. It follows that each birth and each death
happens at 0 or ε earlier than before. The corresponding transformation of persistence
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diagrams is a shift by ε down and a shift by ε to the left, except that a movement stops
before the point enters the negative regions of birth or of death. If r ∈ R′′U(ε) then all
points in the diagrams of X lie on the two segments and the quadrant that define RX(ε).

Multi-scale example. Observe that the Local Homology Inference Theorem describes
the relationship between the persistence diagrams of X and of U for a fixed radius r. It is
difficult to know ahead of time which value of r is most appropriate and in many situations
it is not even desirable to make a choice. We cope with this difficulty by examining the
persistent behavior across all radii. We use the example in Figure 5.5 to illustrate what we
have in mind. Here X is a one-dimensional space embedded in R2. It consists of a string

Figure 5.5: Left: the one-dimensional chain of loops, X. Right: the dimension 1 (α|r)-
vineyard of X at z. The only significantly persistent vine runs roughly diagonally in the
Birth-Radius plane and tracks a relative 1-cycle. All other vines run near the Radius-axis
and track classes caused by the loops in the chain.

of loops, each connected to the loop before and the loop after. Its dimension 1 vineyard
at the point z contains a prominent vine that has high persistence across all values of
r. This vine tracks a dimension 1 relative homology class and corresponds to the chain
itself which, from a distance, may be seen as a single curve. It can be detected even for
rather sparse samples. Furthermore, the vineyard contains two small vines per loop, one
tracking a relative and the other an absolute homology class. The relative class emerges
at the moment the ball Br first intersects the loop. It attains its largest persistence when
Br reaches the maximum near the center of the loop after which time the corresponding
point in the diagram stops moving and sweeps out a vertical vine. At the same moment the
absolute class emerges and attains its largest persistence when Br reaches the other end of
the loop after which time the corresponding point stops moving and sweeps out a vertical
vine, as before.

For the study of local homology we are primarily interested in small values of r, that is,
the lower portion of the vineyard. Of course, what small means is in the eye of a beholder.
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On the other hand, the Local Homology Inference Theorem and its inverse can be used
to make informed guesses. If the space X in Figure 5.5 is sampled sufficiently densely,
then small values of r resolve it, and we are able to detect the three dimension 1 cycles in
the local homology of z. Specifically, there are three vines emerging from the origin, each
tracking a relative homology class. If the sampling is not sufficiently dense then we cannot
distinguish X from a 1-manifold. Indeed, an arc passing through the vertices joining the
loops could conceivably produce the same sample.

5.5 Power Cell Algorithm
In this section, we describe an algorithm for constructing the series of (α|r)-vineyards of a
finite set of points as seen from a fixed point z ∈ Rn. The algorithm is based on comparing
various subcomplexes of the Delaunay triangulation of the finite set.

Voronoi decompositions. In Section 2.4 we introduced Voronoi decompositions and De-
launay triangulations. In this section we review and extend them to the case of weighted
distance. Letting u ∈ Rn be a point with weight w ∈ R, the weighted square distance
of x ∈ Rn from u is πu(x) = ‖x− u‖2 − w. For the common case in which the weight
vanishes the weighted square distance is the squared Euclidean distance. Given a set of
weighted points U , the (weighted) Voronoi cell of u ∈ U is

V (u) = {x ∈ Rn | πu(x) ≤ πv(x), v ∈ U}.

For the time being we are interested in the case in whichU is finite and all weights are zero.
We index the points and use the shorter notation Vi = V (ui) for their Voronoi cells. Each
Vi is the intersection of finitely many closed half-spaces and therefore a convex polyhe-
dron. Collectively, the Vi cover the entire space thus forming the Voronoi decomposition of
Rn, which we denote as Vor(U |Rn); see Figure 5.6. We are also interested in the Voronoi
decompositions of the sublevel sets inside the ball and on the sphere, which we denote
as Vor(U |Uα ∩Br) and Vor(U |Uα ∩ ∂Br). The former consists of cells Vi ∩ Uα ∩ Br,
which are convex and generically either empty or n-dimensional. The latter consists
of cells Vi ∩ Uα ∩ ∂Br, which are intersections of spherical caps and generically either
empty or (n − 1)-dimensional but not necessarily topologically simple. For example, in
Figure 5.6 we see a Voronoi edge that intersects ∂Br twice so that one of the two incident
Voronoi cells intersects ∂Br in two components. To cope with the resulting difficulties,
we introduce the set Z(α) of points x ∈ Rn that satisfy ‖x− z‖2 − r2 ≤ ‖x− ui‖2 − α2

for all ui ∈ U . This is the Voronoi cell of z in Vor(U ∪ {z}|Rn) in which every point has
weight α2 except for z which has weight r2. To distinguish it from the other Voronoi cells
we refer to Z(α) as the power cell of z. More important than Z(α) itself is the comple-
ment of its interior, Z0(α) = Br− intZ(α). We will see in Section 5.6 that Z0(α) behaves
topologically like Uα ∩ ∂Br. A distinct advantage of the former set is that its intersections
with the Voronoi cells are convex. Furthermore, it is not difficult to show that every point
in Z0(α) also belongs to Uα, that is, Z0(α) ⊆ Uα ∩ Br.
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Figure 5.6: Voronoi decompositions of space, of the sublevel set of points at distance at
most α from U , and of restricted versions of the same sublevel set. The Voronoi cells of
the black dots contribute to the decompositions of Uα ∩ ∂Br and of Z0(α), those of the
gray and black dots contribute to the decomposition of Uα ∩ Br, and the Voronoi cells of
all dots contribute to the decompositions of Uα and of Rn.

Delaunay triangulations. Computationally more convenient than the Voronoi decom-
positions are their dual Delaunay triangulations. For a subset X ⊆ Rn this is the set
Del(U |X) of simplices σ ⊆ U for which X and Vσ =

⋂
ui∈σ Vi have a non-empty in-

tersection. In other words, Del(U |X) is the nerve of the collection of sets X ∩ Vi. For
X = Rn we get the usual notion of Delaunay triangulation and for X ⊂ Rn we get the re-
stricted Delaunay triangulation as defined in [42]. Generically, Del(U |Rn) is a simplicial
complex geometrically realized in Rn; see Figure 5.7. We are also interested in the restric-

Figure 5.7: Delaunay triangulations dual to the Voronoi decompositions of the rectangular
window in Figure 5.6 as well as of Uα ∩ Br and of Z0(α). The drawing style identifies
which vertices, edges, and triangles belong to which Delaunay triangulations.

tions to Uα ∩ Br and to Z0(α). In these cases the Delaunay triangulations depend on α
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and we write K(α) = Del(U |Uα ∩Br) and K0(α) = Del(U |Z0(α)). Since the restricting
domains are subsets of each other, the three Delaunay triangulations are subcomplexes of
each other, namely K0(α) ⊆ K(α) ⊆ Del(U |Rn); see Figure 5.7.

Computing persistence. We now discuss the construction of the series of persistence di-
agrams of the distance function dU restricted to the ball of fixed radius r around z. Specif-
ically, we compute the diagram that describes the evolution of the homology classes in the
sequence (5.3). Alternatively, we could compute the diagram of the sequence (5.4), which
by the Isomorphism Lemma contains the same information as (5.3) but read backwards.
We do neither and instead compute the diagrams from the respective first halves since
this avoids the need to subdivide the Delaunay triangulation and leads to a simpler and
more efficient implementation. Indeed, we substitute the sequence of complexes K(α),
for 0 ≤ α < ∞, and the homomorphisms induced by inclusion for the first half of (5.3).
A formal proof that this substitution does not affect the persistence diagrams will be given
in Section 5.6. To do the actual computation, we construct a filtration of the simplices in
K(∞) = Del(U |Br), and compute its pairing. Details of this construction are described
in Section 5.7.

Constructing vineyards. Recall that the series of vineyards, Vnrd(dU |dz), may be iden-
tified with the 1-parameter family of persistence diagrams, Dgm(dU |Br), for 0 ≤ r <∞.
This is also how we construct it, by maintaining the persistence diagrams while growing r
from zero to infinity. Indeed, we just need to maintain the two orderings of the simplices
and update the persistence pairing whenever these orderings change. For each simplex
σ ∈ Del(U |Rn) there are functions in r2 that characterize when σ belongs to K(α) and
when to K0(α). Importantly, these functions are mostly continuous so that the mainte-
nance of the orderings reduces to transpositions of contiguous simplices; see Section 5.7.
Furthermore, each function is piecewise algebraic, where the number of pieces and the
degrees are bounded from above by some constant. It follows that the graphs of any two
functions cross at most some constant number of times. The total number of transpositions
is therefore in O(m2). Finally, the persistence pairing can be maintained in time O(m) per
transposition as described in the previous chapter. It follows that the entire algorithm takes
time at most cubic in the number of simplices.

(α|r)-VINEYARD THEOREM. Given the Delaunay triangulation of U in Rn and a point
z ∈ Rn, the series of (α|r)-vineyards of the two distance functions, Vnrd(dU |dz), can be
constructed in time O(m3), where m is the number of simplices in Del(U |Rn).

5.6 Correctness
In this section, we prove that substituting the complexes K0(α) ⊆ K(α) for the spaces
Uα ∩ ∂Br ⊆ Uα ∩ Br does not affect the persistence diagrams. We do this in two
steps, first constructing homotopy equivalences between spaces and second embedding
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the induced isomorphisms between the corresponding homology groups in commuting
diagrams.

Homotopy equivalence of pairs. Beyond homotopy equivalences between spaces we
need them between pairs of spaces. Specifically, (X,X0) is homotopy equivalent to
(Y, Y0), denoted as (X,X0) ' (Y, Y0), if there exist maps of pairs in both directions whose
compositions are homotopic to the respective identities [60, p. 27]. We begin by establish-
ing a homotopy equivalence between the pairs (Uα∩Br, Uα∩∂Br) and (Uα∩Br, Z0(α)).

POWER CELL LEMMA. Let U, α, z, r be such that Br − Z0(α) 6= ∅. Then the identity
on Uα ∩Br is a homotopy equivalence of (Uα ∩Br, Uα ∩ ∂Br) and (Uα ∩Br, Z0(α)) as a
map of pairs.

PROOF. It suffices to show that the restriction of the identity, i : Uα ∩ ∂Br → Z0(α), is a
homotopy equivalence. Let y be a point in Br−Z0(α). Every point x in Z0(α) belongs to
Br but not to the interior of Z(α). The weighted square distance of x from z is therefore
non-positive and not smaller than the smallest weighted square distance to a point in U .
Hence ‖x− ui‖2 − α2 ≤ 0 for at least one ui ∈ U which implies Z0(α) ⊆ Uα. Now draw
the ray that starts at y and passes through x and let x′ be the point where it crosses ∂Br.
We map x to x′ and thus define a retraction j : Z0(α)→ Uα ∩ ∂Br. The composition i ◦ j
is the identity on Uα ∩ ∂Br. The other composition, j ◦ i, is homotopic to the identity of
Z0(α), as established by the straight-line homotopy λ : Z0(α) × [0, 1] → Z0(α) defined
by λ(x, t) = (1− t)x+ tx′. This implies that the identity is a homotopy equivalence as a
map of pairs, as claimed.

We note that when Br ∩ Z(α) = ∅ then there is no homotopy equivalence between the
pairs. Indeed, we then have Br ⊆ Uα so that (Uα ∩ Br)− (Uα ∩ ∂Br) = Br − ∂Br is an
open ball while (Uα ∩Br)− Z0(α) = ∅.

We use the Nerve Subdivision Lemma from Section 2.3 in our context, and let C be the
collection of cells Vi ∩ Uα ∩ Br in the Voronoi decomposition of the restricted sublevel
set. Recall that K(α) is the nerve of this collection of sets. Next we construct a map
hα : || SdK(α) || → Uα ∩ Br by specifying it at the vertices and extending it by piecewise
linear interpolation. Recall that Vσ is the intersection of the Voronoi cells of all vertices of
σ. To define the map we set

hα(σ̂) = arg min
x∈Vσ∩Uα∩Br

d2
U(x)− d2

z(x).

By construction, hα(σ̂) belongs to the intersection of the cells that correspond to the ver-
tices of σ. We can therefore apply the Nerve Subdivision Lemma and conclude that hα is
a homotopy equivalence. We are also interested in the restriction of hα to the barycentric
subdivision of K0(α). Recall that σ ∈ K(α) belongs to K0(α) iff Vσ ∩ Z0(α) is non-
empty. By construction, the point hα(σ̂) then lies in this intersection. The restriction of hα
is therefore a map h′α : || SdK0(α) || → Z0(α) that again satisfies the assumptions of the
Nerve Subdivision Lemma. Hence, hα is a homotopy equivalence as a map of pairs.
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Commuting diagrams. The Power Cell and Nerve Subdivision Lemmas imply that the
series H(Uα ∩ Br, Uα ∩ ∂Br), H(Uα ∩ Br, Z0(α)), and H(K(α), K0(α)) are isomorphic.
However, to use Persistence Equivalence Theorem from Section 2.2 and conclude that the
corresponding sequences of homology groups give rise to the same persistence diagrams
we need more, namely that the groups form a commuting diagram whose vertical maps
are isomorphisms. We draw the diagram of spaces and maps between them from which
the commuting diagram can be obtained by application of the homology functor:

(Uα ∩Br, Uα ∩ ∂Br)
jα
′

α→ (Uα′ ∩Br, Uα′ ∩ ∂Br)
↓ iα ↓ iα′

(Uα ∩Br, Z0(α))
jα
′

α−→ (Uα′ ∩Br, Z0(α′))
↑ hα ↑ hα′

(K(α), K0(α))
gα
′

α−→ (K(α′), K0(α′)),

where α ≤ α′. By the Power Cell and Nerve Subdivision Lemmas, the vertical maps
induce isomorphisms between the homology groups of the spaces. The maps i and j are
inclusions which implies that the upper square of the corresponding diagram of homology
groups commutes. To prove the same for the lower square we consider the maps e =
jα
′

α ◦ hα and e′ = hα′ ◦ gα′α . Consider the map H : ||K(α) || × [0, 1]→ Uα ∩ Br defined by
H(x, t) = hαt ◦ gαtα (x), where αt = (1− t)α+ tα′. Since the maps g and j are inclusions
and the maps h vary continuously with α, H is a homotopy between e and e′. This implies
that the induced homomorphisms between the corresponding homology groups are the
same, e∗ = e′∗.

To summarize, we have isomorphisms connecting the groups in the columns of a com-
muting diagram. It follows that each of the three rows gives rise to the same series of
persistence diagrams. In other words, our algorithm which computes persistence diagrams
using the complexes K(α) and K0(α) is correct.

5.7 Algorithm Details
In this section we go through the details of constructing and maintaining the filtrations
which we use to compute the persistence diagrams and vineyards described above.

5.7.1 Thresholds
Given a point z ∈ Rn and a radius r ≥ 0, we use the restriction of the Delaunay triangula-
tion to the ball Br and the pair (Br, ∂Br), both centered at z, to assess the local homology
of the data at z. Specifically, we consider the complexes

K(α) = Del(U |Uα ∩Br);

K0(α) = Del(U |Z0(α)),
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where we recall that Z0(α) = Br − intZ(α) is contained in Uα. In this section, we study
under what conditions these complexes contain a simplex in Del(U |Rn).

Threshold for A. A necessary condition for a simplex σ ∈ Del(U |Rn) to belong to K(α)
is it belongs to the Delaunay triangulation of the sublevel set,

A(α) = Del(U |Uα).

This complex is also known as the alpha complex of U [41]. To characterize when σ
belongs to A(α) we consider the smallest (n− 1)-sphere that passes through the points of
σ ⊆ U and encloses none of the points of U . We call this the smallest empty circumsphere
of σ and let c0 ∈ Rn be its center and %0 its radius. If σ = {ui} is a vertex then the
(n − 1)-sphere degenerates to the point c0 = ui and we have %0 = 0. Generically, c0 and
%0 are unique and we set ασ = %0.

CONDITION A. Let σ be a simplex in Del(U |Rn). Then

σ ∈ A(α) iff α2
σ ≤ α2.

There is an alternative geometric interpretation of this condition in terms of the smallest
but possibly non-empty circumsphere of σ. It passes through the points of σ but may
enclose other points of U . Unless dimσ = n, its center c and radius % are not necessarily
the same as c0 and %0. The point c is also the center of the common intersection of the
balls of radius α centered at the vertices of σ and the plane of dimension n−dimσ whose
points are equidistant from these vertices. If this common intersection is non-empty then
it is either a point or a ball of dimension n − dimσ and square radius α2 − %2. The
interpretation of Condition A is now that α2

σ is the smallest value of α2 for which this
ball has a non-empty intersection with Vσ =

⋂
ui∈σ Vi. In other words, σ ∈ A(α) iff

Uα ∩ Vσ 6= ∅ which is consistent with the definition of A(α).

Thresholds forE andE0. We take an indirect approach to the restrictions of the Delaunay
triangulation to Uα ∩ Br and to Z0(α). We begin by considering the restrictions to the
power cell and its boundary,

E(α) = Del(U |Z(α));

E0(α) = Del(U |∂Z(α)).

We note that E(α) subdivides the underlying space of the closed star of z in W (α), the
Delaunay triangulation of U ∪ {z} in which z has weight r2 and all other points have
weight α2. Furthermore E0(α) is the link of z in W (α). To characterize when σ belongs
to E(α) and E0(α) we set η2

σ = ϕ2
σ = r2 +%2

0−‖z − c0‖2 if σ is an n-simplex. Otherwise,
we set η2

σ equal to the maximum value η2
τ assigned to any n-simplex τ that has σ as a face.

Symmetrically, we set ϕ2
σ equal to the minimum value ϕ2

τ assigned to any n-simplex τ that
has σ as a face.
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CONDITION E. Let σ be a simplex in Del(U |Rn). Then

σ ∈ E(α) iff α2 ≤ η2
σ;

σ ∈ E0(α) iff ϕ2
σ ≤ α2 ≤ η2

σ.

There is again an alternative geometric interpretation of this condition. For a point x ∈ Vσ
let %(x) be the distance to the points ui ∈ σ. Then x belongs to Z(α) iff ‖x− z‖2 −
r2 ≤ %(x)2 − α2. The interpretation is now that ϕ2

σ ≤ α2 ≤ η2
σ iff Vσ has a non-empty

intersection with ∂Z(α). For α2 = ϕ2
σ the rest of Vσ lies inside Z(α) while for α2 = η2

σ

the rest of Vσ lies outside Z(α).

Thresholds for F and F0. Next we consider the restrictions of the sublevel set to the
power cell and its boundary,

F (α) = Del(U |Uα ∩ Z(α));

F0(α) = Del(U |Uα ∩ ∂Z(α)).

By definition, F (α) is a subset of A(α) ∩ E(α) and, similarly, F0(α) is a subset of
A(α) ∩ E0(α), but generally we do not have equality. By definition of the power cell
we have Uα ∩ Vσ ⊆ Z(α) if and only if Uα ∩ Vσ ⊆ Br as well as Uα ∩ Vσ ∩ Z(α) = ∅ if
and only if Uα ∩ Vσ ∩ Br = ∅. We use this to formulate a test for deciding when a simplex
in E(α) belongs to F (α) and the same for E0(α) and F0(α). Specifically, we give a con-
dition when Uα ∩ Vσ intersects ∂Br. Consider the affine hull of the simplex, D = aff σ,
and the affine hull of the corresponding intersection of Voronoi cells, V = aff Vσ. By
construction, D is a plane of dimension dimσ, V is a plane of dimension n − dimσ,
and the two intersect orthogonally in the point c defined earlier; see Figure 5.8. Assuming
dimσ < n, the balls of radius α centered at the vertices of σ intersect V in a ball of dimen-
sion n−dimσ whose center is c and whose square radius is α2−%2. Let d be the distance

c

V

v

z

%

% α

α

ui

uj

D

d

Figure 5.8: The point c is the center of the smallest circumsphere of the edge σ = {ui, uj}.
The distance of z from c is (d2 + v2)1/2.

of z from D and v the distance from V . When |d− (r2 − v2)1/2| = (α2 − %2)1/2 then the
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(n − dimσ)-ball centered at c touches the sphere of radius r around z, and depending on
the sign of d− (r2 − v2)1/2 it does this either from the inside or from the outside. Taking
the square and solving for α2 we get w(r2) = r2 + %2 + d2 − v2 − 2d(r2 − v2)1/2. This
function has a minimum at r2 = d2 + v2 for which the value is w(r2) = %2. We now set

κ2
σ =

{
w(r2) if r2 ≤ d2 + v2;
%2 if d2 + v2 ≤ r2;

λ2
σ =

{
%2 if r2 ≤ d2 + v2;

w(r2) if d2 + v2 ≤ r2.

They are both undefined for r2 < v2, the case when w(r2) is undefined. The above deriva-
tion does not make sense for an n-simplex σ but the following condition does, provided
we set κ2

σ = λ2
σ = %2.

CONDITION F. Let σ be a simplex in Del(U |Rn). Then

σ ∈ F (α) iff max{α2
σ, κ

2
σ} ≤ α2 ≤ η2

σ;
σ ∈ F0(α) iff max{α2

σ, ϕ
2
σ, κ

2
σ, λ

2
σ} ≤ α2 ≤ η2

σ.

The geometric interpretation of Condition F should be clear. The only way for a simplex
σ to belong to A(α) and E(α) but not to F (α) is that its circumcenter c lies outside the
sphere around z, r2 < d2 + v2, and the (n − dimσ)-ball does not touch this sphere,
α2 < κ2

σ. Similarly, the only way for σ to belong to A(α), E0(α), and F (α) but not to
F0(α) is that c lies inside the ball around z, d2 + v2 < r2, and the (n − dimσ)-ball does
not touch the sphere, α2 < λ2

σ.

Thresholds for K and K0. We now derive conditions for the restrictions to Uα ∩ Br

and Z0(α). Specifically, we use the fact that both these two spaces are swept out by the
boundary of the sublevel set restricted to the power cell.

SWEEP LEMMA. Let α ≥ 0. Then

Uα ∩ Br =
⋃

0≤s≤α
∂Us ∩ Z(s);

Z0(α) =
⋃

0≤s≤α
Us ∩ ∂Z(s).

PROOF. To establish the first equation we show that x ∈ ∂Us implies x ∈ Br iff x ∈ Z(s).
Indeed, x ∈ ∂Us implies ‖x− ui‖2 − s2 = 0, where ui ∈ U minimizes the distance to x.
Thus x ∈ Z(s) iff ‖x− z‖2 − r2 ≤ 0, as required. This implies that ∂Us ∩ Z(s) sweeps
out Uα ∩ Br as we increase s from 0 to α.

To prove the second equation we show that x ∈ ∂Z(s) implies x ∈ Br iff x ∈ Uα.
Indeed, if x ∈ ∂Z(s) then ‖x− z‖2−r2 = ‖x− ui‖2−s2, where ui ∈ U again minimizes
the distance to x. Both sides are non-positive at the same time, as required. This implies
that Us ∩ ∂Z(s) sweeps out Z0(α) = Br − intZ(α) as we increase s from 0 to α.
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The first equation in the Sweep Lemma implies that Uα ∩ Br is the union of the
Us ∩ Z(s), even without taking the boundary of Us. Hence, K(α) is the union of the
F (s), for 0 ≤ s ≤ α. Similarly, the second equation implies that K0(α) is the union of
the F0(s), for 0 ≤ s ≤ α. We observe that if η2

σ is less than α2
σ or κ2

σ then F (s) is empty,
for all s, and so are K(α) and K0(α). Otherwise, we get the conditions by dropping the
upper bounds in Condition F.

CONDITION K. Let σ be a simplex in Del(U |Rn). If η2
σ < max{α2

σ, κ
2
σ} then K(α) =

K0(α) = ∅. Otherwise,

σ ∈ K(α) iff max{α2
σ, κ

2
σ} ≤ α2;

σ ∈ K0(α) iff max{α2
σ, ϕ

2
σ, κ

2
σ, λ

2
σ} ≤ α2.

Indeed, the upper bound just guarantees that Uα ∩ Vσ has a non-empty intersection with
Z(α). Since we increase s from 0 to α there is a non-empty intersection between Us ∩ Vσ
and Z(s), for some s, iff there is a non-empty intersection between Uα ∩ Vσ andBr, which
is captured by the remaining inequality.

Thresholds for A and A0. We can further simplify the condition by restricting the Delau-
nay triangulation to the sublevel set outside the power cell,

A0(α) = Del(U |Uα − intZ(α)).

Equivalently, A0(α) = (A(α)−K(α)) ∪ K0(α). By construction, A0(α) is a subcomplex
of A(α) and the difference is A(α) − A0(α) = K(α) − K0(α). We also consider the
diagram of relative homology groups with induced homomorphisms,

(K(α), K0(α))
gα
′

α−→ (K(α′), K0(α′)),
↓ iα ↓ iα′

(A(α), A0(α))
jα
′

α−→ (A(α′), A0(α′)),

Since all maps are inclusions the diagram commutes and so does the corresponding dia-
gram of relative homology groups. Finally, excision implies that the vertical maps induce
isomorphisms. It follows that the persistence diagrams we get from the (A(α), A0(α))
are indeed the same as the one of the (K(α), K0(α)). The reason for making this final
substitution is computational convenience.

CONDITION A’. Let σ be a simplex in Del(U |Rn). Then

σ ∈ A(α) iff α2
σ ≤ α2;

σ ∈ A0(α) iff max{α2
σ, ϕ

2
σ, λ

2
σ} ≤ α2.
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5.7.2 Trajectories
In this subsection, we extend the results of the last subsection to the situation in which
the radius of the restricting ball varies. It is convenient to add r to the notation, writing
K(α, r) = K(α) and similar for other complexes.

Absolute homology. Recall that the first half of the sequence (5.3) gives the same persis-
tence diagrams as the sequence of the K(α, r), where r is fixed. Each simplex σ in the
Delaunay triangulation undergoes the same kind of evolution as α goes from 0 to∞:

Step 1. σ becomes a member of K(α, r);

a step that may also be skipped. The thresholds that determine membership in this complex
vary continuously with the radius. Looking at the squares and parametrizing by r2, we get
three functions, α2

σ, κ
2
σ, η

2
σ : [0,∞) → [0,∞). Rewriting the first half of Condition K we

find how these functions control membership in K(α, r).

ABSOLUTE HOMOLOGY EVOLUTION LEMMA. Let σ be a simplex in Del(U |Rn) and
r ≥ 0. If η2

σ(r2) < max{α2
σ(r2), κ2

σ(r2)} then K(α, r) = ∅. Otherwise,

σ ∈ K(α, r) iff max{α2
σ(r2), κ2

σ(r2)} ≤ α2.

v2 r2

α2

η2
σ

κ2
σ

d2 + v2r2
0

α2
σ

%2 + d2

%2
0

%2

Figure 5.9: The simplex σ belongs toK(α, r) iff the point (α2, r2) lies in the shaded region
above the function that discriminates between membership and non-membership.

The inequality is illustrated in Figure 5.9. The smallest value of r2 at which σ belongs to
any of the K(α, r) is when max{α2

σ(r2, κ2
σ(r2)} = η2

σ(r2). Letting this value be r2
0, we

have a continuous function from [r2
0,∞) to [0,∞) that discriminates membership of σ in

K(α, r) from non-membership. In general, this function consists of two portions, the one
on the left contributed by κ2

σ and the one on the right contributed by α2
σ. If c = c0 then

r2
0 ≤ d2 + v2 which guarantees that the left portion is non-empty. Otherwise, it is possible

that the function is constant over the entire interval it is defined.
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Relative homology. Recall that the first half of the sequence (5.4) gives the same persis-
tence diagrams as the sequence of the (A(α, r), A0(α, r)), where r is again fixed. Each
simplex σ ∈ Del(U |Rn) undergoes the same kind of evolution as α goes from 0 to∞:

Step 1. σ becomes a member of A(α, r);

Step 2. σ becomes a member of A0(α, r),

two steps that may also occur simultaneously. Similar to the absolute homology case we
get three continuous functions, α2

σ, ϕ
2
σ, λ

2
σ : [0,∞)→ [0,∞). Rewriting Condition A’ we

find how these functions control membership in (A(α, r), A0(α, r)).

RELATIVE HOMOLOGY EVOLUTION LEMMA. Let σ be a simplex in Del(U |Rn) and
r ≥ 0. Then

σ ∈ A(α, r) iff α2
σ(r2) ≤ α2;

σ ∈ A0(α, r) iff max{α2
σ(r2), ϕ2

σ(r2), λ2
σ(r2)} ≤ α2.

r2

α2

α2
σ

d2 + v2

λ2
σ

ϕ2
σ

%2
0

%2

Figure 5.10: The simplex σ belongs toA(α, r) andA0(α, r) iff the point (α2, r2) lies in the
shaded region above both membership discriminating functions, and σ belongs to A(α, r)
but not to A0(α, r) iff the point lies in the light shaded region between the two functions.

Figure 5.10 illustrates the inequalities for a simplex σ whose smallest circumsphere is
different from its smallest empty circumsphere: c 6= c0 and % < %0. Often the picture is
even simpler. For example, if dimσ = n then % = %0 and the function that controls the
membership of σ in A0(α, r) simplifies to r2 + %2− (d2 + v2). It follows that the region in
which σ belongs to A(α, r) but not to A0(α, r) is a wedge to the right of the corner point
at r2 = d2 + v2 and α2 = %2.

Crossings and transpositions. The two Evolution Lemmas introduce three membership
functions per simplex,

fσ,K(r2) = max{ασ(r2), κ2
σ(r2)};

fσ,A(r2) = ασ(r2);

fσ,A0(r
2) = max{ασ(r2), ϕ2

σ(r2), λ2
σ(r2)}.
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All three are continuous except for fσ,K which is undefined for r2 < r2
0. We set fσ,K(r2) =

∞ for 0 ≤ r2 < r2
0, and viewing infinity as just another value we thus get a function with

a single discontinuity. We will see shortly that having just one discontinuity per function
does not substantially affect the results we reap. Each membership function consists of
pieces contributed by α2

σ, ϕ2
σ, κ2

σ, and λ2
σ. The α2

σ are constant functions and the ϕ2
σ

are functions of degree one in the variable r2. The κ2
σ and λ2

σ are also of degree one in r2

except that they have an additional square root term. Each membership function consists of
a constant number of pieces. The only case in which this is perhaps not entirely obvious is
for ϕ2

σ which is a point-wise minimum of functions ϕ2
τ over all n-simplices τ in Del(U |Rn)

that contain σ as a face. There can be an arbitrary number of such n-simplices but since
the corresponding functions are of the form ϕ2

τ (r
2) = r2 + const, only one provides all the

minima. Two functions f, g : [0,∞)→ [0,∞) cross at r1 if

[f(r1 − ε)− g(r1 − ε)][f(r1 + ε)− g(r1 + ε)] < 0

for all sufficiently small ε > 0. For continuous functions this happens at a point at which
they agree, f(f1) = g(r1). Similarly, we define when f and g cross at an interval along
which they agree. Any two pieces of the membership functions have constant complexity
and cross at most a constant number of times. Since each membership function consists
only of a constant number of such pieces, this implies that any two membership functions
cross at most some constant number of times. Drawing the graphs of the membership
functions of all m simplices in Del(U |Rn) we therefore get an arrangement of 3m curves
with at most some constant times m2 vertices, edges, and regions. When we sweep the
arrangement with a vertical line from left to right we do at most some constant times m2

transpositions at the vertices and another constant times m2 transpositions because of the
m discontinuities. The (α|r)-Vineyard Theorem follows.

5.8 Discussion
The main contribution of this chapter is the development of topological data analysis meth-
ods for the algorithmic study of sampled stratified spaces. Specifically, we show how to
assess the local homology at a point and prove that a sufficiently dense sample implies
the correctness of our assessment. While non-trivial, the described algorithm is readily
implementable and runs in time at most cubic in the number of simplices in the Delaunay
triangulation.

We expect that in practice the rate-limiting step of our algorithm will be the construc-
tion of the Delaunay triangulation. In most cases, only a small subcomplex of the De-
launay triangulation is relevant for the assessment. More generally, we may restrict the
construction to simplices that connect points at distance at most some threshold r from
each other. Examples of complexes that limit themselves to such simplices are the alpha,
Čech, and Vietoris-Rips complexes; see [41, 76]. It would be interesting to develop fast
output-sensitive algorithms for these complexes and to substitute them for the Delaunay
triangulation of Rn on which the methods in this chapter are currently based.
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The ability to assess the local homology of a stratified space at a point from a finite
sample is an important step in a more ambitious program. The larger goal is the construc-
tion of the stratified space or a description of the class of stratified spaces that possibly
give rise to the observed sample.

The logical next step is determining the local dimension of the space at a point, i.e. the
dimensions of the strata close to the given point. Knowing local homology alone is not
enough as the following example illustrates. However, it allows us to group points into
strata whose dimensions are readily definable. Consider the following two examples in
Figure 5.11. The first is a tetrahedron with its barycenter joined to each one of its edges.

Figure 5.11: Left: tetrahedron with its barycenter joined to its edges. Right: octahedron
with an edge connecting opposite vertices joined to the remaining vertices. Local neigh-
borhoods of the barycenter on the left, and a point on the additional edge on the right are
highlighted. The local homology is the same in both cases, but the local dimensions differ.

The local homology groups at the barycenter consist of three independent 2-cycles, and
the barycenter belongs to the 0-stratum. The second example is an octahedron with an
edge added between a pair of opposite vertices. The edge is joined with each one of the
four remaining vertices resulting in four triangles. The local homology groups of every
point on the edge consist of three independent 2-cycles with the edge forming a piece of
the 1-stratum.

We note that the notion of local dimension that we desire to compute reflects the strat-
ification of the space and as such is different than the dimension typically considered in
computational geometry and machine learning literature. A point with enough rays coming
out of it can span a space of arbitrary dimension, while still belonging to a 0-dimensional
stratum.
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Chapter 6

Kernels, Images, and Cokernels

6.1 Introduction
Up to this point we have considered nested sequences of spaces, X0 ⊆ X1 ⊆ . . . ⊆ Xm,
and persistent homology has arisen from considering the corresponding sequences of ho-
mology groups, H(X0) → H(X1) → . . . → H(Xm), connected from left to right by
homomorphic maps induced by inclusion. Persistence tracks when a homology class is
born and dies in this sequence. As defined in Section 2.2 this can also be done for an arbi-
trary sequence of vector spaces connected by homomorphic maps. Motivation for studying
such more general sequences is derived from the following two applications. First, we de-
scribe how sequences of kernels can be used to refine the multi-scale assessment of local
homology from the previous chapter. Second, we use sequences of images to introduce
a notion of persistence that filters out noise induced by imprecise specifications of do-
mains. This contrasts standard persistence which can handle imprecise function values
but not imprecise domains. As an application, we approximate the persistence diagram of
a function knowing only its values at a finite set of points. This chapter is based on the
joint work with David Cohen-Steiner, Herbert Edelsbrunner, and John Harer [28]; its main
contributions are two-fold:

• an algorithm that computes the persistence diagrams of sequences of kernels, im-
ages, and cokernels in time at most cubic in the size of the simplicial complexes
representing the data is given in Section 6.3, and its correctness is shown in Section
6.4;

• applications of the algebraic and algorithmic results to measuring local homology
and to approximating persistence diagrams of noisy functions on noisy domains are
described in Section 6.6.
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6.2 Algebra
This section extends the concept of persistent homology to sequences of kernels, images,
and cokernels. It also proves that the persistence diagrams of these extensions are stable.

Kernels, images, and cokernels. For the extension of persistence to kernels, images, and
cokernels we consider two functions, f : X → R and a majorizing function g : Y → R
defined on a subspace Y ⊆ X, that is, f(y) ≤ g(y) for all y ∈ Y ⊆ X. Assuming both
functions are tame, we order the collection of critical values of f and g and interleave
them with a sequence of real values si as in Section 2.2. The corresponding sequences of
sublevel sets give rise to two parallel sequences of homology groups,

H(X0) → H(X1) → . . . → H(Xm)

↑ j0 ↑ j1 . . . ↑ jm

H(Y0) → H(Y1) → . . . → H(Ym),

where Xi = f−1(−∞, si] and Yi = g−1(−∞, si]. The two sequences are connected by
homomorphisms ji : H(Yi)→ H(Xi) induced by the inclusions Yi ⊆ Xi. We call this the
two function setting, in contrast to the more special one function setting in which g is the
restriction of f to Y. More about the relationship between the two settings later. We are

H(Xi)

imji

ji

kerji

H(Yi)

kerji+1

ji+1

imji+1

H(Xi+1)

H(Yi+1)

Figure 6.1: A square of four homology groups and the maps between them. The square
commutes because all four maps are induced by inclusions.

interested in the kernels, images, and cokernels of the connecting homomorphisms,

ker ji = {γ ∈ H(Yi) | ji(γ) = 0 ∈ H(Xi)};
im ji = {ji(γ) ∈ H(Xi) | γ ∈ H(Yi)};

cok ji = H(Xi)/im ji.
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We note that the “coimage” of the map ji, in symbols H(Yi)/ker ji, is isomorphic to the
image of this map, and therefore does not deserve any special attention. Figure 6.1 illus-
trates this construction for two contiguous spaces in both sequences. The square defined
by the four homology groups commutes. It follows that the inclusion Yi ⊆ Yi+1 induces
a homomorphism ker ji → ker ji+1. Similarly, the inclusion Xi ⊆ Xi+1 induces a homo-
morphism im ji → im ji+1 and another homomorphism cok ji → cok ji+1. We thus get
sequences of kernels, images, and cokernels,

Ker(g→f) : ker j0 → ker j1 → . . .→ ker jm;

Im(g→f) : im j0 → im j1 → . . .→ im jm;

Cok(g→f) : cok j0 → cok j1 → . . .→ cok jm,

all connected from left to right by homomorphisms. Homology classes are born and die
in these sequences same as in the sequences of homology groups. Using the definition
of persistence for vector spaces we can therefore define persistent kernels, persistent im-
ages, and persistent cokernels as well as construct the corresponding persistence diagrams,
which we denote as Dgm(ker g→f), Dgm(im g→f), and Dgm(cok g→f).

Birth-death combinations. We consider the generic case in which changes happen one
at a time. An event thus corresponds to a birth, a death, or no change in the kernel, in the
image, and in the cokernel, giving rise to 27 different combinations. But the ranks of these
groups are not independent, that is,

rank ker ji + rank im ji = rank H(Yi);

rank im ji + rank cok ji = rank H(Xi),

for all i. We can therefore relate the births and deaths in the three sequences using the
births and deaths in the sequences of homology groups of the Yi and of the Xi. The
first equation eliminates two of the nine combinations for kernels and images. Another
combination is eliminated by ker ji being a subgroup of H(Yi), hence a death in the kernel
implies a death in the homology group. Table 6.1 lists the remaining six cases. Case A

Case ker ji im ji H(Yi)
A birth death —
B — birth birth

C, D — — —
E — death death
F death — death
P birth — birth

Table 6.1: The five cases in the two function setting relating kernels and images. Except
for Case P they also occur in the one function setting.

occurs for example when Yi−1 = Xi−1 = Yi is a circle and Xi is obtained by adding a
spanning disk. Case B occurs when Yi−1 = Xi−1 is a point and Yi = Xi is obtained by
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adding an arc that completes the point to a circle. Case C occurs when Yi−1 = Xi−1 = Yi

is a point and Xi is again obtained by adding an arc that forms a circle. We also retain
ranks in Case D which occurs when Xi−1 is a circle, Yi−1 = Yi is a point on this circle,
and Xi is obtained by adding a spanning disk. Case E occurs when Yi−1 = Xi−1 is a circle
and Yi = Xi is obtained by adding a spanning disk. Case F occurs when Xi−1 is a disk,
Yi−1 is its boundary circle, and we get Yi and Xi by adding another spanning disk to both
spaces. Finally, Case P occurs when Xi−1 = Xi is a disk, Yi−1 is a point of its boundary
circle, and Yi is obtained by adding the rest of the circle. This last case happens in the two
function setting but not in the one function setting because it requires points that are added
to the sublevel set of g strictly after they are added to the sublevel set of f .

Similarly, the second equation eliminates two of the nine combinations for images and
cokernels. Another combination is eliminated by im ji being a subgroup of H(Xi), hence
a death in the image implies a death in the homology group. Table 6.2 lists the remaining
six cases. Cases A to F have been described above and the example for Case P also works

Case im ji cok ji H(Xi)
A, E death — death

B birth — birth
C, F — birth birth

D — death death
Q — — —
R birth death —

Table 6.2: The five cases in the two function setting relating cokernels and images. Except
for Cases Q and R they also occur in the one function setting.

for Case Q. Case R occurs when Xi−1 = Yi = Xi is a circle and Yi−1 is a point on that
circle. Cases Q and R do not happen in the one function setting in which every change has
a non-zero effect on the rank of the homology group of Xi.

Mapping cylinder. We reduce the two function setting to the one function setting using a
construction that will be exploited by the algorithm described in Section 6.3. Specifically,
the mapping cylinder of the pair Y ⊆ X is the space X′ = X ∪ (Y × [0, 1]) obtained by
gluing Y ⊆ X to Y × {0} ⊆ Y × [0, 1]. This is illustrated in Figure 6.2. The function

Y× 0 X

Y× 1

Figure 6.2: The mapping cylinder of Y ⊆ X.
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f ′ : X′ → R agrees with f on X and with g on Y′ = Y × {1}, linearly interpolating
in between, that is, f ′(x) = f(x) for every x ∈ X and f ′(y, t) = (1 − t)f(y) + tg(y)
for every y ∈ Y and every t ∈ [0, 1]. The pair of functions f ′ and g′ = f ′|Y′ induces
homomorphisms j′i : H(Y′i) → H(X′i); see Figure 6.3. The corresponding sequences of
kernels, images, and cokernels are

Ker(g′→f ′) : ker j′0 → ker j′1 → . . .→ ker j′m;

Im(g′→f ′) : im j′0 → im j′1 → . . .→ im j′m;

Cok(g′→f ′) : cok j′0 → cok j′1 → . . .→ cok j′m.

We claim that they contain the same information as the sequences Ker(g→f), Im(g→f),
and Cok(g→f).

H(X′i) H(X′i+1)

H(Xi) H(Xi+1)

H(Y′i) H(Y′i+1)

H(Yi) H(Yi+1)

//

77oooo
//

OO 77ooo

j′i

//

OO

j′i+1
OO

ji
77oooo

//

77ooo

OO

ji+1

Figure 6.3: The diagram of homology groups of two contiguous sublevel sets of f, g, f ′, g′.
The diagram commutes because ten of the twelve maps are induced by inclusions, and
the left and right maps of the bottom square are induced by the inverses of the mapping
cylinder retractions restricted to Y′i and Y′i+1 respectively.

MAPPING CYLINDER LEMMA. The pairs of functions f, g and f ′, g′ define the same
persistence diagrams for kernels, images, and cokernels:

Dgm(grp g→f) = Dgm(grp g′→f ′)
for grp ∈ {ker , im , cok }.
PROOF. We note that Xi is a deformation retract of X′i. This implies that the map from
H(Xi) to H(X′i) induced by the inclusion Xi ⊆ X′i is an isomorphism. Similarly, the
map from H(Yi) to H(Y′i) implied by the inverse of the retraction is an isomorphism.
The maps ji : H(Yi) → H(Xi) and j′i : H(Y′i) → H(X′i) are also induced by inclu-
sions which implies that the left square in the diagram of Figure 6.3 commutes. It fol-
lows that the pairs of kernels, images, and cokernels are isomorphic, ker ji ' ker j′i,
im ji ' im j′i, and cok ji ' cok j′i. Similarly, the right square commutes and the ker-
nels, images, and cokernels of ji+1 and j′i+1 are isomorphic. To prove that the two se-
quences of kernels define the same persistence diagram we still need to consider the bot-
tom square in Figure 6.3. The left and right maps are isomorphisms and the square com-
mutes by construction. Hence Dgm(ker g→f) = Dgm(ker g′→f ′). Similarly, we get
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Dgm(im g→f) = Dgm(im g′→f ′) and Dgm(cok g→f) = Dgm(cok g′→f ′) by con-
sidering the top square in Figure 6.3.

Stability. An important property of the persistence diagrams is their stability originally
proved in [25]. As stated in Section 2.2, the bottleneck distance between the diagrams of
two functions f and f ′′ is bounded from above by the difference between the functions,

dB(Dgm(f),Dgm(f ′′)) ≤ ‖f − f ′′‖∞.
Here dB is the maximum of ‖u− γ(u)‖∞, where u is a point in the diagram of f and γ
is a dimension-preserving bijection between the diagrams of f and of f ′′. Recall that the
points on the diagonal belong to the diagrams and can therefore be used in the effort to
find a matching γ that minimizes the length of the longest edge. The proof of stability
given in [25] can be adapted to the setting in this chapter. Specifically, we consider the
maps ja : H(Ya) → H(Xa) and j′′aε : H(Y′′a+ε) → H(X′′a+ε), where ε is the larger of the
two differences between functions, ‖f − f ′′‖∞ and ‖g − g′′‖∞, and Ya, Xa, Y′′a+ε, X′′a+ε

are the sublevel sets of g, f , g′′, f ′′ for thresholds a and a+ ε. To adapt the proof we need
that the maps induced by the inclusions Ya ⊆ Y′′a+ε and Xa ⊆ X′′a+ε send the kernel of ja
into the kernel of j′′a+ε. But this follows from the commutativity of the diagram

H(Xa) H(X′′a+ε)

H(Ya) H(Y′′a+ε).

//

OO

ja

//

OO

j′′a+ε

Similarly, we need that the inclusions Y′′a ⊆ Ya+ε and X′′a ⊆ Xa+ε send ker j′′a into ker ja+ε

which follows by symmetry. With this property the original proof of stability goes through
and we refer to [25] for details. The arguments for the images and the cokernels are the
same and we state the results.

STABILITY THEOREM. Let f, f ′′ : X → R and g, g′′ : Y → R with f(y) ≤ g(y)
and f ′′(y) ≤ g′′(y) for every y ∈ Y ⊆ X and ε = max{‖f − f ′′‖∞, ‖g − g′′‖∞}. Then
the bottleneck distance between the persistence diagrams is bounded from above by the
difference between the functions:

dB(Dgm(grp g→f),Dgm(grp g′′→f ′′)) ≤ ε,

for grp ∈ {ker , im , cok }, provided f , g, f ′′, and g′′ are continuous and tame and there is
a triangulation of X in which Y arises as a subcomplex.

6.3 Algorithms
In this section, we describe the algorithms for computing the persistence diagrams of the
sequences of kernels, images, and cokernels. At their core is the reduction of a matrix as
described in Section 2.2.

84



Partial and reordered matrices. We prepare the computation of the persistence diagrams
by reducing five matrices. By the Mapping Cylinder Lemma, we can restrict ourselves to
the one function setting. We therefore assume two simplicial complexes, L ⊆ K, let
f : K → R be an injective function whose sublevel sets are subcomplexes of K, and let
g be the restriction of f to L. We write Df for the incidence matrix of K whose rows and
columns are ordered by f . Similarly, we write Dg for the incidence matrix of L whose
rows and columns are ordered by g.

Step 1 Reduce the two incidence matrices to get Rf = DfVf and Rg = DgVg.

Step 2 Reorder the rows of Df leaving the columns untouched to get a new matrix Dim .
Specifically, its rows correspond to the simplices in L, ordered by g, followed by the
simplices in K − L, ordered by f . Reduce the new matrix to get Rim = DimVim ;
see Figure 6.4.

L L

Rim Dim Vim

=

K K

K

K

K-L K-L

Figure 6.4: Matrices computed in the reduction of the incidence matrix of K with re-
ordered rows. The matrix Vim is upper-triangular with all ones in the diagonal.

Step 3 Delete some of the columns from Vim and reorder the rows to get a new matrix
Dker . Specifically, keep the columns that represent cycles and remove all others.
Furthermore, reorder the rows so they correspond to the simplices in L, ordered by
g, followed by the simplices in K−L, ordered by f . Finally, reduce the new matrix
to get Rker = DkerVker .

Step 4 Starting again with Df , replace some of the columns to get a new matrix Dcok .
Specifically, substitute columns in Vg that represent cycles for the corresponding
columns in Df , adding zeros to compensate for the simplices in K − L, which are
missing in Vg. Reduce the new matrix to get Rcok = DcokVcok .

We note that reducing Df is redundant because the type information it furnishes is also
available fromRim . We still useRf because this clarifies which information is used where.

Births, deaths, and pairs. We use the reduced matrices to compute the persistence dia-
grams of the sequences of kernels, images, and cokernels. Specifically, Rf and Rg (and
in one case Rim ) decide which simplices give birth and which give death and Rker , Rim ,
Rcok determine how the births match up with the deaths. We begin with the sequence of
kernels and recall the relevant Cases A and F in Table 6.1.
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Algorithm for kernels:

Birth. A simplex σ gives birth in Ker(g→f) iff σ ∈ K − L, σ is negative in Rf , and the
lowest one in its column in Rim corresponds to a simplex in L.

Death. A simplex τ gives death in Ker(g→f) iff τ ∈ L, τ is negative in Rg, and τ is
positive in Rf . In this case, the lowest one in the column of τ in Rker corresponds
to a simplex σ ∈ K − L that gives birth in Ker(g→f). Then (σ, τ) is a pair.

A dimension p homology class is given birth to in the kernel by a (p + 1)-simplex and it
dies at the hand of another (p + 1)-simplex. The dimension p persistence diagram thus
consists of all points (f(σ), f(τ)) encoding pairs of (p + 1)-simplices identified in the
Death case as well as all points (f(σ),∞) encoding unpaired (p+ 1)-simplices identified
in the Birth case. We continue with the sequence of images and recall the relevant Cases
A, B, E in Tables 6.1 and 6.2.

Algorithm for images:

Birth. A simplex σ gives birth in Im(g→f) iff σ ∈ L and σ is positive in Rg.

Death. A simplex τ gives death in Im(g→f) iff τ is negative in Rf and the lowest one in
its column in Rim corresponds to a simplex σ ∈ L. Then (σ, τ) is a pair.

Note that the Death case splits into Case A with τ ∈ K − L and Case E with τ ∈ L.
The dimension p persistence diagram consists of all points (f(σ), f(τ)) encoding pairs of
p- and (p + 1)-simplices identified in the Death case as well as points (f(σ),∞) encod-
ing unpaired p-simplices identified in the Birth case. We continue with the sequence of
cokernels and recall the relevant Cases C, F and D in Table 6.2.

Algorithm for cokernels:

Birth. A simplex σ gives birth in Cok(g→f) iff σ is positive inRf and it is either inK−L
or negative in Rg.

Death. A simplex τ gives death in Cok(g→f) iff τ is negative in Rf and the lowest one in
its column in Rim corresponds to a simplex in K−L. In this case, the lowest one in
the column of τ in Rcok corresponds to a simplex σ that gives birth in Cok(g→f).
Then (σ, τ) is a pair.

The dimension p persistence diagram consists of all points (f(σ), f(τ)) encoding pairs of
p- and (p+ 1)-simplices identified in the Death case as well as points (f(σ),∞) encoding
unpaired p-simplices identified in the Birth case. The running time of the three algorithms
is O(m3), same as the original persistence algorithm given in [39]. Furthermore, it is
possible to extend the algorithm in Chapter 4 so that it maintains the reduced matrices in
time O(m) per transposition of contiguous simplices in the ordered sequences; details can
be found in Section 6.5. This is the method of choice for computing the vineyard of a pair
of 1-parameter families of functions f and g, as they arise in applications considered in
Section 6.6.

86



6.4 Correctness
We prove the correctness of the algorithms inductively, by considering one simplex at a
time. For each index i, we consider the actual births, deaths, and pairs that occur in the
sequences up to ji, and the computed births, deaths, and pairs reported by the algorithm
working on the simplices up to σi. To prove that the corresponding sets are the same at
the end, for i = m, we show they are the same throughout, for all i. We do this in two
steps, first proving that the algorithms are necessary and second that they are sufficient. In
other words, we first prove that the computed information is correct and second that it is
complete.

Preparation. We begin with a few preliminary observations. Recall that Tables 6.1 and
6.2 list the possible combinations of births and deaths under the simplifying assumption
that each group has at most one change happening at any one time. This is indeed the
situation if we add individual simplices to a growing complex; see Appendix B. We can
therefore use the two tables in the correctness proof, but since we only consider the one
function setting, we can further simplify and combine them into Table 6.3. We get Ki by

Case ker ji im ji cok ji H(Li) H(Ki) σi

A birth death — — death K − L
B — birth — birth birth L
C — — birth — birth K − L
D — — death — death K − L
E — death — death death L
F death — birth death birth L

Table 6.3: In the one function setting there are six cases in which the addition of σi changes
the kernel, the image, or the cokernel.

adding σi to Ki−1. If σi ∈ L then Li = Li−1 ∪ {σi} else Li = Li−1. In Cases B, E, F,
the addition of σi changes the homology of Li−1, which can only happen if σi ∈ L. In
the remaining three cases, the addition of σi changes the homology of Ki−1 but not that of
Li−1, which can only happen if σi ∈ K − L. Note also that the change in the homology
of Ki−1 is unambiguous in all cases, that is, σi is positive in Cases B, C, F, and negative
in Cases A, D, E. We note that each death is paired with a unique birth but some births
remain unpaired until the very end. It is convenient to rephrase the pairing condition in a
form that is most directly useful in the argument below. We say a cycle appears in grp jl
if the class it represents is born at that group, where grp ∈ {ker , im , cok } as usual. We
note that the cycle might exist in the complex before it appears in the group.

DEATH LEMMA. Let l < i be indices and z a cycle that appears first in grp jl and
is zero in grp ji. If there is no index i′ < i for which there is a cycle that first appears
in grp jl and is zero in grp ji′ then the class represented by z is born at grp jl and dies
entering grp ji.
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Next we consider the incidence matrices used to compute the persistence diagrams of
the sequences of kernels, images, and cokernels. To simplify language, we let M [i] be the
column of matrix M that corresponds to σi or, alternatively, the set of simplices whose
corresponding rows have a one in this column. We will refer to it as column i of M and
note that in some cases it is not the i-th column from the left, for example whenM = Rker .

OBSERVATION. Recall thatRf ,Rg,Rker ,Rim ,Rcok are the reduced incidence matrices
computed by the algorithms in Section 6.3.

(i) If Rg[i] = 0 then Rf [i] = 0.

(ii) Rf [i] = 0 iff Rim [i] = 0.

(iii) If σi ∈ L and Rf [i] 6= 0 then the lowest one in Rim [i] corresponds to a simplex in L.

(iv) The columns of Rker are all non-zero.

(v) If σi ∈ K − L then the lowest one in Rker [i] corresponds to σi.

(vi) If σi ∈ L, Rg[i] 6= 0, and Rf [i] = 0 then the lowest one in Rker [i] corresponds to a
simplex in K − L.

PROOF. Except for added zeros the columns of a simplex in L are the same in Dg and in
Df . This implies (i). The reordering of rows does not change the rank of the matrix. This
implies (ii). By Observation (i), Rg[i] 6= 0 follows from σi ∈ L and Rf [i] 6= 0. Since the
columns of σi in Dg and Dim are the same, except for added zeros as before, the lowest
one inRim [i] cannot be lower than that inRg[i]. This implies (iii). The matrix Vim is upper
triangular with a diagonal of ones. It thus has full rank and so does Dker which consists of
a subset of the columns in Vim . This implies (iv). We get Dker from this subset of columns
by reordering the rows, moving simplices in L up and simplices in K − L down. The
reordering maintains the relative order of the simplices in K − L. This implies (v).

Finally, we prove (vi) by contradiction, assuming the lowest one inRker [i] corresponds
to a simplex σl ∈ L. Since Rf [i] = 0 we have Rim = 0. It follows that column i of Vim

is part of Dker , after reordering the rows. Because of the upper triangular structure of
Vim , the diagonal ones may be moved by the reordering but they are not cancelled in the
reduction. By assumption, the lowest one in Rker [i] corresponds to a simplex in L which
can therefore only be σi, that is, l = i. But then Rker [i] stores a cycle in L, a contradiction
to Rg[i] 6= 0.

Inductive step. We assume inductively that the actual and the computed sets of births,
deaths, and pairs are the same up to index i − 1. This is clearly true for i − 1 = 0, when
all sets are empty.

Necessity. Using this as the induction hypothesis, we first show that the computed
sets of births, deaths, and pairs are subsets of the corresponding actual sets up to index i.

Images. The algorithm for the images reports a birth for the new simplex iff σi ∈ L and
Rg[i] = 0. In this case, Vg[i] stores a cycle that represents a new class in the homology
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group of Li as well as in im ji. Hence, σi gives rise to an actual birth in the sequence of
images.

The algorithm reports a death iff Rf [i] 6= 0 and the lowest one in Rim [i] corresponds
to a simplex σl ∈ L. The reduced column is a sum of boundaries in Ki,

Rim [i] =
∑

σk∈Vim [i]

Dim [k].

This cycle first appears in im jl and it is zero inKi and therefore also in im ji. Furthermore,
there is no i′ < i for which there is a chain that first appears in im jl and is zero in im ji′ .
Otherwise, (σl, σi′) would be a pair and the lowest one in Rim [i′] would correspond to σl,
by inductive hypothesis. But then Rim could be reduced further, a contradiction. By the
Death Lemma, σi gives rise to an actual death and (σl, σi) is an actual pair in the sequence
of images.

Cokernels. The algorithm for the cokernels reports a birth iff Rf [i] = 0 and either σi ∈
K − L or else σi ∈ L and Rg[i] 6= 0. In this case, we have indeed a new class in the
cokernel, namely the one represented by Vf [i].

The algorithm reports a death iffRf [i] 6= 0 and the lowest one inRim [i] corresponds to
a simplex inK−L. By Observation (iii), this implies σi ∈ K−L. Letting σl correspond to
the lowest one in Rcok [i], the algorithm reports (σl, σi) as a pair. In this case, the reduced
column is a sum of boundaries in Ki and cycles in Li,

Rcok [i] =
∑

σk∈Vcok [i]

Dcok [k].

This cycle appears first in cok jl and it is zero in Ki and therefore also in cok ji. Further-
more, there is no index i′ < i for which there is a chain that first appears in cok jl and is
zero in cok ji′ . As before, we use induction and the fact that Rcok is reduced to prove this
claim. By the Death Lemma, σi gives rise to an actual death and (σl, σi) is an actual pair
in the sequence of cokernels.

Kernels. The algorithm for the kernels reports a birth iff σi ∈ K − L, Rf [i] 6= 0, and
the lowest one in Rim [i] corresponds to a simplex in L. In this case, Rim [i] is a cycle
in L and Vim [i] is a chain whose boundary is this cycle. Furthermore, i is the smallest
index for which such a chain exists, else we could use induction to show that Rim can be
further reduced. Since σi belongs to Vim [i], this chain does not belong to L. Hence, Rim [i]
represents a class in the kernel and σi gives rise to an actual birth.

The algorithm reports a death iff σi ∈ L, Rg[i] 6= 0, and Rf [i] = 0. By Observation
(vi), the lowest one in Rker [i] corresponds to a simplex σl ∈ K−L. The algorithm reports
(σl, σi) as a pair. To prove that there is an actual death, we recall that the columns in Dker

are cycles in K. We write each cycle as a sum of two chains, one in L and the other in
its complement, Dker [k] =

∑
λ` +

∑
κ`, where the λ` belong to L and the κ` belong to

K −L. The two chains share their boundary, which we denote as zk = ∂
∑
λ` = ∂

∑
κ`.

Clearly, zk is a cycle in L. Because it bounds the sum of the κ`, the cycle belongs to the
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kernel, and because it bounds the sum of the λ`, the cycle is zero in L and therefore also
zero in the kernel. Consider the cycle

z =
∑

σk∈Vker [i]

zk.

We claim that the class it represents in the kernel is born at ker jl. Indeed, if it were born
earlier there would be l′ < l and a chain c ∈ Kl′ whose boundary is z. But then σl
would be positive and by Observation (v) it would be the lowest one of its own column
and not that of column i. Now, Vker [i] provides the sum we need to finish the proof using
the Death Lemma. As before, we use the induction hypothesis and the fact that Rker is
reduced to conclude that there is no index i′ < i for which a cycle appears in ker jl and is
zero in ker ji′ . Therefore, σi gives rise to an actual death and (σl, σi) is an actual pair in
the sequence of kernels.

Sufficiency. We second show that the algorithms are complete, that is, the actual
births, deaths, and pairs are subsets of the corresponding computed sets. Since there is
a bijection between the deaths and the pairs, it suffices to prove the containments for the
births and the deaths. We use Table 6.3 to do this by exhaustive case analysis.

Case 1 σi ∈ K − L.

Case 1.1 Rf [i] = 0. This is Case C in Table 6.3. The only change is a birth in the
cokernel and this is correctly reported by the algorithms.

Case 1.2 Rf [i] 6= 0. Let σl correspond to the lowest one in Rim [i].

Case 1.2.1 σl ∈ K − L. From the above analysis we know that this corre-
sponds to a death in the cokernel. This is Case D in Table 6.3. There are
no other changes and this is correctly reported by the algorithms.

Case 1.2.2 σl ∈ L. From the above analysis we know that this corresponds to
a birth in the kernel and a death in the image. This is Case A in Table 6.3.
There are no other changes and this is correctly reported by the algorithms.

Case 2 σi ∈ L.

Case 2.1 Rf [i] = 0.

Case 2.1.1 Rg[i] 6= 0. This is Case F in Table 6.3. There is a death in the
kernel, a birth in the cokernel, and no change in the image, and this is
correctly reported by the algorithms.

Case 2.1.2 Rg[i] = 0. This is Case B in Table 6.3. The only change is a birth
in the image and this is correctly reported by the algorithms.

Case 2.2 Rf [i] 6= 0. By Observation (i), this implies Rg[i] 6= 0. This is Case E in
Table 6.3. The only change is a death in the image which is correctly reported
by the algorithms.
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We conclude that the actual births and deaths are subsets of the computed births and deaths,
and similarly that the actual pairs are a subset of the computed pairs.

We now have the containment relations in both directions which implies that corre-
sponding sets of computed and actual births, deaths, and pairs are in fact the same. This
concludes the proof that the algorithms in Section 6.3 correctly compute the persistence
diagrams of the sequences of kernels, images, and cokernels.

6.5 Transpositions
We consider the actions necessary to maintain the matrix decompositions under the trans-
position of two contiguous simplices σi and σi+1. The motivation to study this operation is
same as in previous chapters: construction of vineyards. We discuss a kernel persistence
vineyard of interest in applications in the next section.

The maintenance of the R = DU decomposition under such transpositions has been
considered in Section 4.2 following [29] and that algorithm applies directly to the mainte-
nance of Rf = DfVf and Rg = DgVg. However, maintaining the other three decomposi-
tions is more difficult because Dker , Dim , and Dcok are not ordinary incidence matrices.
The algorithm in Section 4.2 expresses an update in terms of pre- and post-multiplications
by idempotent matrices. We observe that multiplying V by the same matrices as R main-
tains the equality R = DV as well as V U = I .

Step 2, the image. Consider first the maintenance of Rim = DimVim which is made
difficult by ordering the rows and columns differently. We distinguish the case in which
σi and σi+1 both belong to L or to K − L from the case in which one belongs to L and
the other to K − L. In the former case, we let P ′ be the transposition matrix of the rows
σi and σi+1, and in the latter case we set P ′ = I . Now we can follow the case analysis in
Section 4.2 replacing the pre-multiplication of Dim and Rim by P with P ′. The only other
adjustment that we must make is in Case 1 in Section 4.2 in which both simplices σi and
σi+1 are positive. Namely, we do not need to check whether a collision is introduced in
Rim by the transposition of rows (Case 1.1 in Section 4.2) if σi and σi+1 do not belong to
the same group, since in this case P ′ = I and no rows transpose.

Step 3, the kernel. Consider second the maintenance of Rker = DkerVker . Recall that the
matrix Dker is obtained from Vim by keeping only the columns of positive simplices and
reordering the rows. If both transposing simplices are positive in Rker then their columns
in Vker do not change. Therefore, their columns in Dker and in Rker transpose as well as
both their rows and columns in Vker . If as a result Vker ceases to be upper-triangular then
we can perform an update similar to Case 2.1 in Section 4.2 by adding the column of σi to
the column of σi+1 before the transposition. Using the matrix Si+1

i for this operation, we
get

P ′RkerS
i+1
i P = (P ′DkerP )(PVkerS

i+1
i P ).
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Observe that this operation may render Rker non-reduced which can also happen as a
result of a row transposition if σi and σi+1 both belong to L or to K −L. If Rker becomes
non-reduced we can fix it by multiplying again by Si+1

i which gives

P ′RkerS
i+1
i PSi+1

i = (P ′DkerP )(PVkerS
i+1
i PSi+1

i ).

This update may result in a Type 2 switch in the pairing, that is both transposing simplices
are responsible for deaths of homology classes. If the two transposing simplices are both
negative then there are no column exchanges inDker ,Rker , and Vker . However, the rows of
Dker and Rker exchange if both σi and σi+1 are in L or in K − L. The former case is easy
because the transposing simplices do not contain the lowest one in their rows. However,
in the latter case, similarly to Case 1.1 of Section 4.2, the matrix Rker may become non-
reduced. Denote by σl and σk (both in L) the simplices in Rker that have in their columns
the lowest ones in the positions of simplices σi and σi+1, respectively. We can reduce Rker

by adding the preceding column to the succeeding column. We thus obtain

P ′RkerS
k
l = (P ′Dker )(VkerS

k
l ) or

P ′RkerS
l
k = (P ′Dker )(VkerS

l
k).

If this update is necessary and k precedes l then we have a Type 1 switch in the pairing
that is, both transposing simplices are responsible for births of homology classes. If σi is
negative and σi+1 is positive in Rf , that is, we are in Case 3 of Section 4.2, then regardless
of whether the pairing switches or not, the columns of Dker remain the same. This obser-
vation follows from the update rule in case the pairing switches. This leaves the column of
the negative simplex to be the sum of the transposing columns while leaving the column
of the positive simplex intact. The rows of Dker transpose only if σi and σi+1 are in L or
in K−L. However, this transposition has no effect since Dker [i, i+1] = Vker [i, i+1] = 1
if and only if there is a switch in the pairing in Rker . As a result, we have

P ′Rker = (P ′Dker )Vker .

If σi ∈ K −L, σi+1 ∈ L and the pairing switches then the pair disappears from the kernel
entirely: the column of Dker that used to represent σi+1 ∈ L now represents the simplex
σi ∈ K − L. If σi is positive and σi+1 is negative then no switches in the pairing may
occur in Rker , so the only concern is the row transposition in Dker and Rker if σi and σi+1

are both in L or in K−L. In the latter case, σi remains paired with itself and is unaffected
by the row transposition. In the former case, σi+1 can never be the lowest one in a column
of Rker while σi can only be the lowest one in its own column, which cannot contain σi+1.
Therefore, no changes in the pairing are possible, and

P ′Rker = (P ′Dker )Vker

is a proper decomposition. We observe that a Type 3 switch in the pairing never arises
in the analysis of changes to the decomposition in Step 3 of the algorithm. This is to be
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expected since the pairs in the kernel are always between simplices of the same dimension,
and Step 3 affects neither image, nor cokernel pairs.

Step 4, the cokernel. Consider finally the maintenance of Rcok = DcokVcok . For reasons
that will become apparent shortly, we switch to maintaining the decomposition Dcok =
RcokUcok , where Ucok = Vcok

−1. We might as well since the matrix Vcok plays no role
in the construction of the persistence diagrams. It is a curious property of the algorithm
in Section 4.2 maintaining D = RU (or equivalently R = DV ) that the only time the
columns of V corresponding to positive simplices can change is in the preprocessing step
of Case 1, namely when σi and σi+1 are both positive in R and V [i, i + 1] = 1. Applied
to the decomposition of Df , we add column Vg[i] to Vg[i + 1] whenever this happens. To
offset the resulting change in Dcok , we add the row of σi+1 to the row of σi in Ucok , noting
that the two rows are not necessarily adjacent. We can update Ucok in linear time while the
equivalent fix to Vcok would require a quadratic number of operations. The only remaining
changes to Dcok are transpositions of rows and columns which we handle directly using
the algorithm in Section 4.2. It follows that the maintenance of the decomposition Dcok =
RcokUcok takes linear time per operation.

6.6 Applications
In this section, we use kernels to measure local homology and images to approximate
persistence diagrams of noisy functions specified on noisy domains. There are additional
applications that are sufficiently straightforward that we can leave the details to the in-
terested reader. One is the denoising of alpha-beta witness complexes as introduced in
[5]; see also [76]. By considering maps from one complex to another, more tolerantly
constructed complex we can preserve persistent features without accidentally introducing
new ones. By varying the scale parameter, α, we thus get a persistence diagram that is
less noisy then the diagram of the sequence of complexes for fixed tolerance parameter β.
Another application is the computation of rank invariants for a doubly-filtered space Xi,k

as considered in [18] and described in Section 4.4.2. Here we get a simple algorithm by
encoding the ranks of the images of Hp(Xi,k) → Hp(Xi′,k′), for fixed i < i′ and variable
k < k′, in a single persistence diagram of the images of the maps Hp(Xi,k) → Hp(Xi′,k).
We can compute all such diagrams in time quartic in the number of simplices in the trian-
gulation of X.

6.6.1 Local Homology
We begin with the application of kernels to measuring the local homology of a space in Rn

at a point not necessarily in the space. Following earlier work, we assume that the space is
not known other then indirectly through a finite set of points sampled in or near the space.

Measuring local homology. In the previous chapter we studied the reconstruction of a
stratified space X from a finite point sample U in Rn; we refer to that space as S in this
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section to avoid clashes of notation. Specifically, we used persistence to define a multi-
scale version of the local homology of S at a point z ∈ Rn. Let Sα be the sets of points
at Euclidean distance at most α from S, Sα the set of points at distance at least α from S,
and Br the closed ball of radius r centered at z. We expressed the homology within a fixed
distance r of z in terms of the persistence diagram of the sequence

0→H(Sα ∩Br)→ . . .→ H(Br)

→H(Br,Sα ∩Br)→ . . .→ 0, (6.1)

where α first goes up, from 0 to ∞, and then down, from ∞ to 0. The first half of
the sequence captures the development of the absolute homology of Sα within Br, and
the second half captures the development of the relative homology of Sα within the pair
(Br, ∂Br). Cycles that lie entirely inside the ball are captured twice, once in each half.
Finally, we varied r from 0 to∞ and this way obtain a vineyard that expresses the local
homology of S at z under the 2-parameter variation of α and r. We also proved relation-
ships between this vineyard and the similarly defined vineyard of a finite set of points
U ⊆ Rn sampled near S.

In this chapter, we substitute a sequence of kernels for (6.1). Specifically, let X = Br,
Y = ∂Br, and let f : X→ R, g : Y→ R map each point to its Euclidean distance from S.
For each value α we write Xα = f−1(−∞, α], Yα = g−1(−∞, α] and let jα : H(Yα) →
H(Xα) be the map induced by the inclusion Yα ⊆ Xα. Assuming f and g are both tame
we have a finite set of critical values and thus a finite sequence of kernels,

Ker(g→f) : ker j0 → ker j1 → . . .→ ker jm, (6.2)

which traces the evolution of the relative homology classes in (6.1) that have a non-zero
boundary in Y = ∂Br. The Stability Theorem in Section 6.2 implies that varying r from
0 to ∞ gives a vineyard. It tracks a homology class as long as the boundary of the ball
with radius r intersects all its representatives. The interval of radii expresses relevant size
information, namely how far away from z the class starts and ends. It is thus no longer
necessary to include absolute homology classes in the measurement and the vineyard sim-
plifies into a form that more closely reflects the shape of the space in the neighborhood
of the point z; see Figure 6.5. Relationships between the vineyard of S and that of a fi-
nite point sample U ⊆ Rn similar to the Local Homology Inference and the Inverse LHI
Theorems in Section 5.4 can be proved using the same methods. Details are omitted.

Computing local homology. Following the previous chapter, we use the Delaunay trian-
gulations of U restricted to the ball Br and to the ball without the interior of the power
cell of the point z, Z0(r) = Br − intZ(r); see Section 5.5 for details. Let Kα =
Del(U |Uα ∩Br) and Lα = Del(U |Uα ∩ Z0(r)) be the Delaunay triangulations that are
further restricted to the set of points at distance at most α from U . Let furthermore

iα : H(Uα ∩ Z0(r))→ H(Uα ∩Br);

lα : H(Lα)→ H(Kα)
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Figure 6.5: The vineyard of the chain of loops defined using the sequence (6.1) on the left
and the sequence (6.2) of kernels on the right. To compare the two diagrams we see that
the kernel sequence reflects the left half of the left vineyard across the diagonal plane and
corrects for the removed absolute homology groups.

be the maps between the homology groups induced by inclusion. To justify the use of
the restricted Delaunay triangulations, we need to show that the persistence diagrams of
the kernels of these maps are the same. This requires that the following diagram is well-
defined, commutative, and its vertical maps are isomorphisms whenever α ≤ α′:

ker jα → ker jα′

↓ iα ↓ iα′

ker iα → ker iα′

↑ hα ↑ hα′

ker lα → ker lα′ .

Consider the following diagram whose maps are all induced by inclusions except for the
lower vertical maps which are motivated by the Nerve Subdivision Lemma, see Sections
2.3 and 5.6.

H(Uα ∩ ∂Br)
jα→ H(Uα ∩Br)

↓ ↓

H(Uα ∩ Z0(r))
iα→ H(Uα ∩Br)

↑ ↑

H(Lα)
lα→ H(Kα).

The top square commutes. The bottom square also commutes since the horizontal maps
are induced by inclusion and the vertical map for Lα is the restriction of the one for Kα.
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Therefore the kernel diagram is well-defined. Since the kernels are subgroups of the do-
mains of their defining maps, the kernel diagram is a restriction of a diagram considered
in Section 5.6. The analysis there implies that it commutes and its vertical maps are iso-
morphisms, as required.

The Stability Theorem of Section 6.2 implies that the kernel persistence diagrams
change continuously with the radius of the restricted ball Br. We construct the implied
vineyard by maintaining the ordering of the simplices and the reduced matrices. However,
unlike with relative homology in the previous chapter we cannot use excision to maintain
different orderings of a static complex. We need to be able to handle insertion of sim-
plices into the ordering when the power cell of the point z expands with r to include new
simplices. Fortunately, the new simplices are paired amongst each other so that these up-
dates can be done in linear time per insertion. Once a simplex is inserted, its position in
the ordering can be described by a continuous function; see Sections 5.7.1 and 5.7.2. It
therefore suffices to maintain the decompositions in the four steps of the algorithm under
transpositions of contiguous simplices. Details on how to perform these operations are
given in Section 6.5.

6.6.2 Noisy Domains
Persistent homology has proven to be well-suited for dealing with noisy functions. Indeed,
the stability of persistence diagrams implies that the topological features of an unknown
ideal function f̃ : X→ R can be approximately recovered knowing only a noisy approxi-
mation f of f̃ . We claim that the persistence for images can be used to furthermore filter
out the topological noise induced by the domain itself.

Stability. We assume an unknown ideal domain given as the zero sublevel set of the
unknown ideal function h̃ : Rn → R, that is, X̃ = h̃−1(−∞, 0]. On this domain we
consider another unknown ideal function but because we will vary the domain we assume
it is defined on the entire ambient space, f̃ : Rn → R. Can we estimate the persistence
diagram of the restriction f̃ |X̃ : X̃ → R knowing only noisy approximations h, f of h̃, f̃?
We give an affirmative answer under mild requirements on the functions. To describe these
requirements we use superscripts for sublevel sets of h and h̃ and subscripts for sublevel
sets of f and f̃ , that is, Xu = h−1(−∞, u], Xa = f−1(−∞, a], Xu

a = Xa ∩ Xu and
similarly for X̃u, X̃a, X̃u

a . Writing ε = ‖h− h̃‖∞ we require that h̃ is smooth and the norm
of its gradient is bounded away from 0 where this is relevant, that is, ‖∇h̃‖ ≥ µ > 0 on
X̃2ε − X̃−2ε. Furthermore, we write δ = ‖f − f̃‖∞ and require that f is Lipschitz with
constant κ, that is, |f(x)− f(y)| ≤ κ‖x− y‖ for all x, y ∈ Rn.

We note that the requirement on h̃ implies a homotopy between the identity on X̃2ε

and a retraction % from X̃2ε to X̃0. To construct the homotopy we consider the integral
lines of the vector field −∇h̃ starting at points x ∈ X̃2ε. Let %(x) be the first point on
the curve starting at x that satisfies h̃(%(x)) = h̃(x) − 2ε or h̃(%(x)) ≤ −2ε. In words, %
moves the fringe outside the boundary of X̃ to the fringe inside that boundary and it moves
the fringe inside that boundary to the boundary of X̃−2ε. Since the gradient has norm no
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smaller than µ > 0 along the integral line, the retraction % : X̃2ε → X̃2ε is well defined.
By construction, there is a homotopy between the identity on X̃2ε and % that moves points
by at most 2ε/µ. We are now ready to state our result.

STABILITY THEOREM FOR NOISY DOMAINS. Let functions h, h̃ : Rn → R with ε =
‖h− h̃‖∞, h̃ smooth, and the norm of the gradient satisfying ‖∇h̃‖ ≥ µ > 0 on X̃2ε −
X̃−2ε. Furthermore, let f, f̃ : Rn → R with δ = ‖f − f̃‖∞ and f Lipschitz with constant
κ. Then

dB(Dgm(f̃ |X̃),Dgm(im f |X−ε→f |Xε)) ≤ 2κε/µ+ δ

provided the restrictions of f̃ to X̃ and of f to X̃, Xε, X−ε are continuous and tame and
there exists a triangulation of Xε in which X−ε and X̃ arise as subcomplexes.

PROOF. By the Stability Theorem for ordinary persistence we have bottleneck distance
dB(Dgm(f̃ |X̃),Dgm(f |X̃)) ≤ δ. It remains to show that the bottleneck distance between
Dgm(f |X̃) and Dgm(im f |X−ε→f |Xε) is bounded from above by c = 2κε/µ.

Writing Fa for H(X̃0
a), the diagram Dgm(f |X̃) is obtained from the sequence formed

by the maps Fa → Fb induced by the inclusion X̃0
a ⊆ X̃0

b for all a ≤ b. Similarly, writing
Ja for the image of the map H(X−εa )→ H(Xε

a), the diagram Dgm(im f |X−ε→f |Xε) is ob-
tained from the sequence of maps Ja → Jb again induced by inclusion and for all a ≤ b.
To adapt the proof of stability given in [25], we need to connect these two sequences by
maps φa : Fa−c → Ja and ψa : Ja−c → Fa, for all a ∈ R, in such a way that the diagram
formed by the two sequences together with the new maps commutes. We construct the

H(X̃0
a−c)

H(X̃−2ε
a ) H(X−εa ) H(X̃0

a) H(Xε
a) H(X̃2ε

a )

H(X̃0
a+c)

ttjjjjjjjjjjjjjj

��

// // //

��

//

ttjjjjjjjjjjjjjjj

Figure 6.6: The diagram used to define the maps φa and ψa. The sequence Fa−c →
Fa → Fa+c is drawn vertically from top to bottom and Ja can be seen as the image of the
composition of two horizontal maps. All maps except for the diagonal ones are induced
by inclusion.

new maps using the homotopy between the identity and the retraction % : X̃2ε → X̃2ε. As
mentioned earlier, the homotopy moves a point by at most 2ε/µ and since f is Lipschitz
with constant κ, % maps X̃0

a−c to X̃−2ε
a which is included in X−εa . The induced homomor-

phism from H(X̃0
a−c) to H(X−εa ) composed with the induced homomorphism from H(X−εa )

to H(Xε
a) gives the map φa. As shown in Figure 6.6, φa connects the two sequences with

a shift of c = 2κε/µ. By a similar process, we construct the map ψa connecting the two
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sequences of vector spaces in the other direction and again with a shift of c. Because % is
homotopic to the identity, the diagram formed by the two sequences and the maps φa and
ψa commutes. The remainder of the proof can be adapted directly from [25].

Diagram approximation. An interesting case of the above theorem arises when we con-
sider a finite set of points, U , sampling an unknown shape, S ⊆ Rn. Let h̃ : Rn → R
be the distance function of S, that is, h̃(x) = infy∈S ‖x− y‖. Similarly, let h : Rn → R
be the distance function of U and set ε to the Hausdorff distance between S and U . For
technical reasons we may have to replace h̃ by a smooth approximation, for example ob-
tained by convolution with an infinitesimally narrow Gaussian so that the assumptions in
the theorem are satisfied. In this setting, the requirement that the norm of the gradient of
h̃ is bounded from below by µ is equivalent to the µ-reach of S exceeding 4ε. Here we
recall that the µ-reach as recently introduced in [20] is a notion of feature size that permits
the treatment of non-smooth objects. Under this assumption, the Stability Theorem for
Noisy Domains implies that it is possible to estimate the persistence diagram of a function
f̃ restricted to the 2ε-offset of S knowing only a Lipschitz function f that approximates f̃
and the point set U that samples S.

To approximate the persistence diagram of f̃ restricted to S itself, we exploit the exis-
tence of an isotopy ι from S2ε to an arbitrarily small offset Sη of the shape such that the
points move by less than 2ε/µ during the deformation. The construction of ι is similar to
the construction of the homotopy between the identity and % described above. The isotopy
implies that Dgm(f |S2ε) equals Dgm(f ◦ ι−1|Sη) which in turn is c-close to Dgmf |Sη by
stability. Hence, the latter diagram can also be estimated from f and U with an accuracy
of 2c. Perhaps surprisingly, Dgm(f |Sη) may not converge to Dgm(f |S) as η goes to 0; see
[22] for examples of shapes S that lack this convergence property. However, convergence
holds for sufficiently regular spaces S, such as smooth submanifolds or geometrically re-
alized simplicial complexes. In these cases we can estimate Dgm(f |S) with precision 2c.

In the more realistic case in which f is only known at a finite set of points, U , a valid
approach replaces f by the function f̄ that is constant on the Voronoi cells of the points
and coincides with f on U . While f̄ is not continuous, it is almost everywhere continuous
in a way that does not disrupt the proof of stability. Furthermore, f and f̄ differ by at
most 4κε on h̃−1(−∞, 4ε]. By the Stability Theorem for Noisy Domains, the persistence
diagrams of the images defined by f and f̄ are close. The diagram for f̄ can be computed
using the alpha shape filtration of U . We thus get a practical algorithm for estimating the
persistence diagram of functions given only at a finite set of points.

6.7 Discussion
In this chapter, we consider persistent homology for sequences of kernels, images, and
cokernels defined by a pair of topological spaces, Y ⊆ X, and two functions, f : X → R
and g : Y → R, with f(y) ≤ g(y) for every y ∈ Y. Since g majorizes the restriction of f
to Y, its sublevel sets are contained in those of f , Ya = g−1(−∞, a] ⊆ Xa = f−1(−∞, a],
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and we have homomorphisms ja : H(Ya)→ H(Xa) induced by the inclusions. To see that
persistent homology is well defined we just need to note that the diagrams

H(Xa) H(Xb)

H(Ya) H(Yb)

//

OO

ja

//

OO

jb

commute for any a ≤ b and thus induce homomorphic maps ker ja → ker jb, im ja →
im jb, and cok ja → cok jb.

It is worth noting that the mapping cylinder construction described in Section 6.2 can
be used to extend the framework from inclusion Y ⊆ X to an arbitrary continuous map
j : Y → X. If we have two functions f : X → R, and g : Y → R, such that j(Ya) ⊆ Xa

with the sublevel set of each space taken with respect to its own map, then the maps ja :
Ya → Xa between the sublevel sets induce homomorphisms on homology groups just the
same. Constructing a mapping cylinder X′ = X∪Y×[0, 1] by identifying (y, 0) ∈ Y×{0}
with j(y) ∈ X, it is easy to verify that the sequences of kernels, images, and cokernels
induced by inclusion Ya = Ya × {1} ⊆ X′a give the same persistence pairing as the three
sequences induced by the continuous maps ja defined above.

One can also extend the framework described in this chapter from spaces Ya ⊆ Xa

to pairs of spaces (Ya,Ya0) ⊆ (Xa,Xa0) using the cone construction exploited for the
computation of extended persistence [26]. Indeed, observing that the relative homology
groups H(Ya,Ya0) are isomorphic to the homology groups of Ya with a cone on Ya0 rel
the cone point, i.e. H(Ya, Ya0) ' H(Ya ∪ CYa0 , ω), we can compute the persistence of
kernels, images, and cokernels induced by the inclusions of pairs of spaces by using the
algorithms of this chapter on corresponding cones.

The mapping cylinder construction and the cone construction can be combined to cope
with arbitrary continuous maps between pairs of spaces rather than only inclusions.

The algorithms for computing the persistence diagrams of the sequences of kernels,
images, and cokernels are variants of the classic Smith normal form algorithm; see [64,
Chapter 1.11]. More directly, we build on the algorithm in [29] which reduces the entire
incidence matrix at once, paying careful attention to the orderings of the rows and the
columns which are the same and consistent with the ordering of the sublevel sets. The
main difficulty in the new setting is that we have two orderings, one for K triangulating X
and the other for L ⊆ K triangulating Y. We cope using the mapping cylinder construc-
tion and matrices in which the rows are reordered so that L precedes K−L. The resulting
algorithms run in time at most cubic in the size of K, same as the reduction algorithm in
[29] as well as the classic Smith normal form algorithm for modulo-2 arithmetic. The fact
that a simple reordering of the rows does the trick suggests that there may be other inter-
esting pieces of information that can be extracted from reduced reordered matrices. Does
the pairing defined by the lowest ones in a reduced incidence matrix in which columns and
rows are ordered independently and arbitrarily have an intuitive interpretation that carries
topological meaning?
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Chapter 7

Discussion

The theory of persistent homology has emerged as an effective tool for handling the om-
niscalar nature of data. Its solid theoretical foundation provides for elegant and concise
solutions to problems that arise in areas ranging from machine learning to scientific vi-
sualization to computational biology. Perhaps more importantly persistence provides a
philosophical perspective and an example of how science could approach measuring and
interpreting nature, how continuity of scales in physical phenomena and their interaction
can be a blessing, not a burden.

This thesis branches out in the direction of dynamic treatment of persistence. Its orig-
inal motivation is algorithmic analysis of time-varying data. The results obtained in the
process turn out to be instrumental for the study of sampled stratified spaces, and in par-
ticular for applying the omniscalar data analysis paradigm introduced by persistence.

This dissertation begins with Chapter 2 recollecting the necessary theory. The Persis-
tence Equivalence Theorem emphasizes the requirements for clear proofs of correctness
of persistence pairing as illustrated in [11, 23]. The cubic worst-case example sheds light
on the behavior of the persistence algorithm. The Nerve Subdivision Theorem provides a
powerful tool for proving correctness of persistence pairing of filtered collections of con-
vex sets and their nerves, as Chapter 5 demonstrates. The view of persistence computation
as an RU -decomposition provides an insight whose utility we see in Chapters 4 and 6.

The thesis continues with the question of persistence-sensitive simplification present-
ing an algorithm for functions on 2-manifolds as well as limitations in higher dimensions.
The extension of simplification to higher-dimensional spheres is an important open ques-
tion.

Subsequently we introduce persistence vineyards by stacking up persistence diagrams
within a homotopy of functions. The resulting curves allow one to keep track of homologi-
cal features in time-varying data. Interesting questions that remain open are more efficient
update of persistence pairing in particular the kind that relies only on the reduced matrix,
and an algorithm for top-down computation of persistence diagrams.

In the following two chapters we are motivated by learning sampled stratified spaces.
We initiate this study with the question of determining local homology of such a space at
a point. However, this merely scratches the surface of the rich field that lies beneath. Ulti-
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mately, in the spirit of omniscalar data analysis, one may desire to reconstruct a hierarchy
of stratified spaces with accompanying information that allows the user to make decisions
about meaningful scales within the hierarchy. This goal is ambitious and presents a longer-
term research agenda. A more immediate and realistic question in this line of research is
determining the local dimensions of the space at a point as suggested in Section 5.8.

The inference theorems in Chapters 2, 5, and 6 exploit the fact that distance functions
of a space and its ε-approximation differ by at most ε. Unfortunately, while convenient for
analysis, when dealing with high dimensional data, distance functions present more of a
liability than advantage. Delaunay triangulation is exponential in the ambient dimension
of the point set making it desirable to use some approximation of the distance function
rather than computing it explicitly. The recent work using Vietoris-Rips and Witness com-
plexes [5, 23, 76] can be seen as approximating distance functions for homology inference,
especially as distilled in [19, 23]. Adopting the techniques for assessing local homology
presented in this thesis to Vietoris-Rips [78] and Witness complexes is a practically im-
portant and promising course of study.

Finally, while theoretically simple and easy to analyze, the Hausdorff model of noise
allowed by the notion of ε-approximation is often unrealistic. It would be far more de-
sirable to be able to work with a point set drawn from a distribution that is uniformly
random on a topological space and Gaussian in normal directions. This line of research
was initiated by Dasgupta [30, 31] for the restricted case of 0-manifolds, i.e. the mixture
of Gaussians. Carlsson et al. use various input preprocessing heuristics aimed to deal with
outlier sensitivity of distance functions [17]. Most recently Niyogi, Smale, and Wein-
berger [66] propose a clean-up algorithm for making the homology inference problem in
the Gaussian noise setting manageable with the distance function approach. Development
of persistence-based omniscalar methods for dealing with Gaussian noise is an important
research direction left open by this thesis.
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pling Theory for Compact Sets in Euclidean Space. Proceedings of the Annual Sym-
posium on Computational Geometry, pages 319–326, New York, New York, June
2006.
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Same Dimension Lemma, 29
simplex, 6

coface, 6
face, 6
link, 7
negative, 13
positive, 13
star, 7

simplicial complex, 6
Simplification Theorem for 2-Manifolds, 28
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skeleton, 7
Stability Theorem, 15

Combinatorial Stability Theorem, 47
for Kernels, Images, Cokernels, 84
for Noisy Domains, 97

stratification, 56
stratum, 56
sublevel set, 2
Switch Lemma, 29

tame function, 11
triangulation, see simplicial complex

underlying space, 6
upper link, 24
upper star, 24

vine, 40
vineyard, 40
Voronoi cell, 21

weighted, 66
Voronoi decomposition, 21

weighted, 66
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