
Chapter 1

Triplet Merge Trees

Dmitriy Smirnov and Dmitriy Morozov

Abstract Merge trees are fundamental data structures in computational
topology. They track connected components in sublevel sets of scalar func-
tions and can be used to compute 0-dimensional persistence diagrams, to
construct contour trees on simply connected domains, and to quickly query
the relationship between connected components in different sublevel sets. We
introduce a representation of merge trees that tracks the nesting of their
branches. We present algorithms to construct and manipulate the trees in
this representation directly. We show that our algorithms are not only fast,
outperforming Kruskal’s algorithm, but they are easy to parallelize in shared
memory using double-word compare-and-swap operations. We present experi-
ments that illustrate the scaling of our algorithms as functions of the data
size and of the number of threads.

1.1 Introduction

Merge trees are widely used in computational topology. These data structures
track how components appear and merge in sublevel sets of functions, as one
sweeps the threshold from negative to positive infinity. Once constructed,
merge trees can be used to generate contour trees [1] or 0-dimensional persis-
tence diagrams [2]. They are used in applications ranging from combustion to
cosmology to materials science.

Most algorithms to compute merge trees are closely related to algorithms
for minimum spanning tree construction. Of these, the most common is
Kruskal’s algorithm [3]. Recently, Carr et al. [4] introduced an algorithm that
constructs merge trees by incrementally pruning extrema. It can be viewed as
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an adaptation of Bor̊uvka’s algorithm [5] to the merge tree problem, and, as
Bor̊uvka’s, their algorithm is amenable to parallelization.

The algorithm of Bremer et al. [6] deserves special attention. It works by
incrementally adding edges to the domain and updating the tree by merging
paths inside it. This algorithm features several desirable properties. (1) It
can process edges in a streaming fashion, without access to the full sequence.
This property is most convenient when the domain is represented implicitly,
and the number of edges is significantly higher than the number of vertices.
(2) It can be used to combine a pair of merge trees to find the merge tree
of the union of underlying domains, in sublinear time. In other words, it
does not need to access those parts of the trees that do not change in the
union. The need to combine merge trees comes up naturally during distributed
computation [7, 8]. (3) It can be easily parallelized in shared memory, in a
lock-free manner, using compare-and-swap operations for synchronization.

The algorithm of Bremer et al. would be perfect if it was not so slow. In
theory, it can scale quadratically in the number of input vertices. In practice,
it is orders of magnitude slower than Kruskal’s algorithm. Section 1.3 includes
this algorithm in several experiments, where it leaves a lot to be desired.

In this paper, we introduce a different representation of merge trees. Instead
of recording the nesting of sublevel sets explicitly, the new triplet representation
records the nesting of the branches of the merge tree. We present algorithms
that construct merge trees in this representation directly by incrementally
adding edges to the domain. They possess the same desirable properties (1)-(3)
as above, and as our experiments show, the new algorithms perform better in
practice than Kruskal’s algorithm. The new algorithms are also sufficiently
simple that they can be parallelized in shared memory using double-word
compare-and-swap primitives for synchronization.

1.2 Background

Given a graph G and a scalar function f : VrtG→ R on its vertices, we assume
that all vertex values are distinct, breaking ties lexicographically in practice.
For a ∈ R, the sublevel graph at a, denoted Ga, is the subgraph induced by
the vertices whose function value does not exceed a. The representative of
vertex u at level a ≥ f(u) is the vertex v with the minimum function value in
the component of u in Ga. The merge tree of function f on graph G is the
tree on the vertex set of G that has an edge (u, v), with f(u) < f(v), if the
component of u in Gf(u) is a subset of the component of v in Gf(v), and there
is no vertex v′ with f(u) < f(v′) < f(v) such that the component of u is a
subset of the component of v′ in Gf(v′). Figure 1.1 illustrates a function on a
graph and its merge tree. (If G is disconnected, a “merge tree” is actually a
forest. We abuse terminology and do not distinguish this case, continuing to
call it a tree, to not clutter the language.)
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Fig. 1.1 A function on a graph and its merge tree.

Intuitively, a merge tree keeps track of the connected components in the
sublevel graphs. If we sweep threshold a from −∞ to ∞, as we cross values
of specific vertices, they either start new components in the tree, or they are
added to existing components, possibly joining multiple such components
together. Such a sweep lies at the core of the most common algorithm for merge
tree construction, which adapts Kruskal’s algorithm, originally developed for
the minimum spanning tree construction. This algorithm processes vertices
in sorted order and maintains connected components in a disjoint set data
structure that supports fast component identification and merging. For each
vertex, it queries the representatives of the connected components of its
neighbors with lower function value and unites them, recording the changes
to the connected components in the merge tree.

The problem of constructing a merge tree is related to the minimum
spanning tree construction. The latter can be reduced to the former by
subdividing the edges of the input graph; the new vertices are assigned the
edge values, while the values of the original vertices are set to −∞. The merge
tree of the resulting function identifies the minimum spanning tree of the
original graph: degree-3 nodes of the merge tree are the vertices subdividing
the edges of the minimum spanning tree.

However, the two problems are distinct. In general merge trees, the values of
the minima vary, a feature important for the algorithms presented in the next
section. Furthermore, the goal is to compute the tree itself rather than to find
the identity of the edges. As a consequence, a folklore reduction from sorting1

shows that the lower bound for merge tree construction is Ω(m + n log n),
where n,m are the numbers of vertices and edges in the input graph. In
contrast, a minimum spanning tree can be built in O(m · α(m,n)) time [9],
where α is the inverse Ackermann function.

The algorithm of Bremer et al. [6], mentioned in the introduction, works
as follows. It initializes the merge tree to be a set of disjoint vertices. It then
processes all the edges one by one, in arbitrary order. Given an edge (u, v), it
merges, in sorted order, the paths from u and v to the root of the merge tree.

1 Given a sequence of n values, take a star graph with n leaves and assign the input values
to the leaves; assign −∞ to the central vertex. The merge tree of this function is a path,

with vertices assigned the input values in sorted order.
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The correctness of the algorithm is easy to see: an edge (u, v) certifies that the
two vertices belong to the same connected components in all sublevel graphs
Ga, with a ≥ max{f(u), f(v)}; the connected components of the sublevel
graphs that contain vertex u are represented by the vertices on the path from
u to the root. We use this algorithm for comparison in the next section.

1.3 Triplet Merge Tree

Merge trees are typically stored in a graph data structure: each node stores
a pointer to its parent, or to its children, or both. These pointers allow
one to traverse the tree and answer various queries: for example, what is the
volume of the component that contains a given vertex; or how many connected
components are there at level b that have a vertex with function value below
a; etc.

We are interested in an alternative representation that records global infor-
mation. Instead of storing its immediate parent, each vertex stores the range
of values for which it remains its own representative (i.e., the deepest vertex in
its connected component), together with the reference to its representative at
the end of this range. The necessary information can be thought of as a triplet
of vertices (u, s, v), such that u represents itself at levels a ∈ [f(u), f(s)), and
v becomes its representative at level f(s). Recursively following the chain of
representatives of v, we can find the representative of u at any level, which in
turn allows us to answer the queries mentioned before. Figure 1.2 illustrates
the triplet representation of the merge tree in Figure 1.1.

A reader familiar with persistent homology will immediately recognize pairs
(f(u), f(s)) as the birth–death pairs in the 0-dimensional persistence diagram.
Similarly, pairs (u, s) are the branches in the decomposition introduced by
Pascucci et al. [10] for contour trees. The extra information stored in the triplet

— which branch a given branch merges into — is crucial for our main goal:
to construct and manipulate the trees directly in the triplet representation.
The rest of this section introduces such algorithms and structural formalism
necessary to prove their correctness.
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Fig. 1.2 A subset of the minimal, normalized triplet representation of the merge tree in
Figure 1.1. The full representation includes triplets (X,X,A), (Z,Z,D), (Y, Y,D), as well

as triplets for the unlabeled degree-2 nodes.
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Structure. Given a graph G with a scalar function f : VrtG→ R, we define
a merge triplet to be a 3-tuple of vertices, (u, s, v), such that u and v are
in the same component of Gf(s) and f(v) < f(u) ≤ f(s), or (u, u, u) if u
is the minimum in its component of G. We define the triplet representation
T to be a set of merge triplets. (A triplet representation is not unique, for
a given function. We specify conditions to make it unique below, and we
take advantage of this flexibility in our algorithms.) A triplet representation
induces a directed graph D(T ), with the same vertex set as the graph G;
D(T ) contains a directed edge (u, v), with label s, if and only if (u, s, v) is a
triplet in T . Figure 1.3 illustrates the directed graph induced by the triplet
representation in Figure 1.2.
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Fig. 1.3 Directed graph induced by the triplet representation in Figure 1.2, with leaves
representing the unlabeled degree-2 nodes omitted.

We let D(T, a) be the subgraph of D(T ) that consists of all vertices u
with f(u) ≤ a and all edges (u, v) with label s such that f(s) ≤ a. The
representative of vertex u at level a in the triplet representation is vertex v
with the lowest function value in the connected component of u in D(T, a).

A representation T is equivalent to the graph G if for every vertex u and
every level a ≥ f(u), the representative of u at a in G is the same as the
representative of u at a in T . Similarly, we say that two representations T1
and T2 are equivalent, T1 ' T2, if every vertex, at every level, has the same
representative in both T1 and T2.

A triplet representation is normalized if every vertex u ∈ VrtG appears as
the first element of exactly one triplet. It follows immediately that the digraph
induced by a normalized representation is a forest, if we ignore the self-loops
at the roots. (We note that the internal nodes in such a forest represent
extrema of the function, while the internal nodes of the regular merge tree
appear as leaves in the digraph; see Figures 1.1 and 1.3.) Furthermore, as the
following lemma states, a normalized representation recovers the branches of
the merge tree (but not necessarily what they merge into).

Lemma 1. If representation T is normalized, then (u, s, v) ∈ T implies that u
is its own representative for all levels a, with f(u) ≤ a < f(s). Furthermore, u
is not its own representative at level f(s). (The only exception are the triplets
(u, u, u) ∈ T , corresponding to minima of the connected components. In this
case, u represents itself at all levels.)
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Proof. If T is normalized, its induced digraph D(T ) is a forest (ignoring the
self-loops at the roots). The component of the subgraph D(T, a), induced by
vertices and edges below a < f(s), that contains vertex u is a subtree rooted
at u (unless u = s, in which case there is no such component). Since vertex
values decrease along the directed edges, u is the minimum of its component,
and, therefore, its own representative, by definition. At level f(s), we add the
edge (u, v) to the digraph D(T, f(s)). Since f(v) < f(u), u stops being its
own representative. ut

Even for normalized representations, existence of triplet (u, s, v) does not
imply that v represents u at level f(s). We say that a representation is minimal
if along every path in the digraph, the values of the edge labels are increasing.
It follows immediately that if T is normalized and minimal, then for every
triplet (u, s, v) ∈ T , v represents u at level f(s).

Our main algorithm, Algorithm 3, relies on the following theorem to
construct a triplet representation.

Theorem 1. Suppose a representation T is equivalent to a graph G. Let G′

denote graph G with an extra edge (u, v); assume without loss of generality
that f(u) < f(v). Then representation T ′ = T ∪ (v, v, u) is equivalent to graph
G′.

Proof. If representation T is equivalent to graph G, then at every level a ∈ R,
there is a bijection between the connected components of the sublevel graph Ga

and those of the subgraph D(T, a) induced by the representation. If a < f(v),
then neither vertex v nor the new edge is present in either, and so there is no
change between Ga and G′

a and D(T, a) and D(T ′, a).
Suppose a ≥ f(v). If u and v are in the same connected component of

Ga, then they are in the same connected component of the induced subgraph
D(T, a). They remain in the same connected component after we add edges
(u, v) to G and (v, v, u) to D(T, a). If they are in different connected compo-
nents, then adding edge (u, v) to Ga merges the two connected components,
but edge (v, v, u) merges the corresponding connected components in D(T, a).
Thus, there is a bijection between the connected components of G′

a and
D(T ′, a). ut

Algorithms. It is possible to construct a triplet representation from a graph
using Kruskal’s algorithm. Algorithm 1 spells out the details. It uses algo-
rithm FindDeepest(T, u), given in Algorithm 2, to find the deepest element
in a connected component, using path compression. (Because we use path
compression alone, the algorithm takes O(m log n) steps in the worse case,
on a graph with n vertices and m edges.) In the next section, we use this
algorithm as a baseline for comparison.

Our main contribution is Algorithm 3 and its auxiliary Algorithms 4, 5,
and 6. Together they construct a normalized minimal triplet representation
by processing the edges of the input graph, adding them one by one into the
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Algorithm 1: ComputeMergeTree(G)

1 Sort vertices by f value;
2 foreach vertex u ∈ G do

3 T [u]← (u, u);

4 CurDeepest[u]← u;
5 nbrs← {v | (u, v) ∈ G, f(v) < f(u)};
6 if #nbrs > 0 then

7 leaves← {FindDeepest(T, v) : v ∈ nbrs};
8 v̂ ← oldest(leaves);
9 T [u]← (u, v̂);

10 if #leaves > 1 then
11 foreach v ∈ leaves \ {v̂} do
12 T [v]← (u, v̂)

13 return T

Algorithm 2: FindDeepest(T, u)

1 û← CurDeepest[u]

2 ( , v)← T [û]

3 while û 6= v do
4 û← CurDeepest[v]

5 ( , v)← T [û]

6 d← û

7 û← CurDeepest[u]
8 ( , v)← T [û]

9 while û 6= v do

10 û← CurDeepest[v]
11 CurDeepest[v]← d

12 ( , v)← T [û]

13 CurDeepest[u]← d
14 return d

triplet representation. Crucially, it does not matter in what order the edges
are processed; we harness this flexibility for parallelization in the next section.

Because we maintain a normalized representation, each vertex occurs as
the first component of exactly one triplet. In the pseudo-code, we use the
associative map notation, T [u]← (s, v), to record triplet (u, s, v) and, similarly,
(s, v)← T [u] to access triplet (u, s, v) ∈ T .

The first loop of Algorithm 3 initializes the vertices of representation T .
The result is trivially equivalent to graph G without any edges.

The second loop employs the main workhorse, the operation Merge(T, u, s, v),
presented in Algorithm 4. Given a normalized representation T , it finds a
normalized representation equivalent to T ∪ (u, s, v). Figure 1.4 illustrates a
single transformation performed by the Merge algorithm.

Because Merge(T, u, s, v) does not guarantee to preserve minimality, Al-
gorithm 3 restores this property in the third loop by calling Repair(T, u),
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Algorithm 3: ComputeMergeTree2(G)

1 foreach vertex u ∈ G do
2 T [u]← (u, u);

3 foreach edge (u, v) ∈ G do

4 if f(u) < f(v) then
5 Merge(T, v, v, u)

6 else

7 Merge(T, u, u, v)

8 foreach u ∈ T do
9 Repair(T, u)

10 return T

Algorithm 4: Merge(T, u, s, v)

1 (u′, su, u′′) ← Representative(T, u, f(s));
2 (v′, sv , v′′) ← Representative(T, v, f(s));

3 if u′ = v′ then return;

4 if f(v′) < f(u′) then
5 swap((u′, su, u′′), (v′, sv , v′′))
6 T [v′]← (s, u′);
7 Merge(T, u′, sv , v′′) ;

presented in Algorithm 6, which finds for each edge the next edge with a higher
label. One could maintain minimality on the fly by keeping back-pointers to
the branches that merge into the given branch (making the induced graph
undirected), but this would obstruct our goal of lock-free shared-memory
parallelism in the next section. So we opt to use the Repair procedure, instead.

Algorithm 5: Representative(T, u, a)

1 (s, v)← T [u]
2 while f(s) ≤ a and s 6= v do
3 u← v
4 (s, v)← T [u]

5 return (u, s, v)

Algorithm 6: Repair(T, u)

1 (s, )← T [u]
2 v ←

Representative(T, u, f(s))
3 if u 6= v then
4 T [u]← (s, v)
5 return T [u]

Correctness. The core of the algorithm is in the Merge procedure, in Algo-
rithm 4. Assuming that representation T is normalized, we want to show that
after Merge(u, s, v) returns, we get a normalized representation equivalent to
T ∪ (u, s, v).

Lemma 2. Let T denote the triplet representation at the beginning of Algo-
rithm 4, and T ′ the representation before the recursive call in step 7. Then,
T ∪ (u, s, v) ' T ′ ∪ (u′, sv, v

′′).
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Fig. 1.4 Induced graph of triplet representations before and after a single transformation

in the Merge(u, s, v) algorithm.

Proof. Fix a level a ∈ R. Let D1 = D(T ∪ (u, s, v), a) and D2 = D(T ′ ∪
(u′, sv, v

′′), a) denote the directed graphs induced by the representations at
the beginning of the algorithm and before the recursive call; see Figure 1.4.
Let x and y be any two vertices in the same connected component in D1,
and let p be the (undirected) path that connects them. If p does not contain
edges (u, s, v) or (v′, sv, v

′′), then it exists in D2, and therefore x and y are
still connected. If p goes through edge (u, s, v), we can replace that edge by
the path u . . . u′, (v′, s, u′), v′ . . . v in D2, since all the edges in the subpaths
connecting vertices u and v have values that do not exceed f(s). If p contains
edge (v′, sv, v

′′), we can replace the edge by path (v′, s, u′), (u′, sv, v
′′) since

f(s) < f(sv).
Similarly, in the other direction. If x and y are in the same component of

D2, then either the path connecting them does not contain edges (v′, s, u′)
or (u′, sv, v

′′) and, therefore, exists in D1; or we can replace (u′, sv, v
′′) by

u′ . . . u, (u, s, v), v . . . v′, (v′, sv, v
′′), and (v′, s, u′) by v′ . . . v,

(u, s, v), u . . . u′.
In summary, two vertices are connected in D1 if and only if they are

connected in D2. Therefore, the two triplet representations are equivalent. ut

At every point of the Merge algorithm, the representation remains normal-
ized. When the exit condition is detected (u′ = v′), the extra triplet does not
add any new information, i.e., in this case T ' T ∪ (u, s, v). The recursive calls
are made with vertices u′ and v′′. By definition, f(v′′) < f(v). Consequently,
the algorithm is always making progress and must eventually terminate. (The
progress is most evident in the induced digraph: the algorithm always moves
up the directed paths in D(T ).) We get the following corollary.

Corollary 1. Algorithm 4 updates normalized triplet representation T , mak-
ing it equivalent to representation T ∪ (u, s, v). The representation remains
normalized.

It follows that Algorithm 3 computes the correct result, as summarized in
the following theorem.

Theorem 2. Algorithm 3 computes a normalized minimal triplet representa-
tion equivalent to the input graph G.
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Proof. The first for-loop in Algorithm 3 initializes representation T to be
equivalent to a graph on the same vertex set as G, but without any edges.
The second for-loop uses Algorithm 4 to update the representation, adding
the edges of the graph. The correctness of this loop follows from Theorem 1
and Corollary 1. The third for-loop ensures that the representation is not only
normalized, but also minimal by finding the representative of every vertex at
the first level where it does not represent itself; its correctness follows from
Lemma 1. ut

Evaluation. Throughout the paper we use three data sets to evaluate the
algorithms. The first, Z2, is a 5123 snapshot of a cosmological simulation. The
second, Vertebra, is a 5123 scan of a head aneurysm, once available online
as part of the volvis.org collection of data sets. The third, Pumice, is a
6402 × 540 signed distance function to a porous material. We use the vertices
and edges of the Freudenthal triangulations of the underlying grids as our
input graphs.

All experiments were performed on a compute node with two sockets, each
with a 16-core Intel Xeon Processor E5-2698 v3 (“Haswell”) at 2.3 GHz.

Figures 1.5, 1.6, and 1.7 illustrate the scaling of Algorithm 1 (labeled
“Kruskal’s”) and Algorithm 3 (labeled “Triplet”) as a function of input size;
the three inputs were downsampled to the sizes specified on the x-axis. They
also show two data points each2 of the path merging algorithm of Bremer et
al. (labeled “Path merging”). The salient point in all cases is that Algorithm 3
is not only competitive with Algorithm 1, but performs significantly better
for larger domain sizes, more than five times better for 5123 Z2 input. The
path merging algorithm is slower and scales significantly worse.

1.4 Shared Memory

We adapt our new algorithms to allow multiple threads to concurrently modify
the triplet representation in shared memory. We use compare-and-swap (CAS)
primitive for synchronization between the threads. This primitive atomically
checks whether a variable contains a given expected value; if it does, CAS
replaces it with the given desired value. The operation is equivalent to
atomically executing Algorithm 7.

Since the variables we need to update atomically store pairs of values, (s, v),
we use double-word compare-and-swap (DWCAS) operations. These should
not be confused with double compare-and-swap (DCAS) operations, which
update two arbitrary words in memory. DWCAS updates two contiguous
words in memory, and, unlike DCAS, it is supported in modern hardware.3

2 We stopped at two data points because by the third, the jobs exhausted the 4-hour
wallclock request.
3 On x86-64 architecture, where we conducted all our experiments, DWCAS is performed

by instruction CMPXCHG16B. It is automatically emitted by the C++ compilers, when provided

with appropriate flags.



1 Triplet Merge Trees 11

323 643 1283 2563 5123
10−2

10−1

100

101

102

103

15.4

1,245.99

4.8 · 10−2

0.44

6.21

71.06

676.93

2.7 · 10−2

0.22

1.8

14.47

122.49

Domain size

S
ec

o
n

d
s

Z2

Path merging

Kruskal’s

Triplet

Fig. 1.5 Running time of the three algorithms as a function of input size, on downsampled
Z2 data set.
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Fig. 1.6 Running time of the three algorithms as a function of input size, on downsampled

Vertebra data set.

Algorithm 7: CAS(v, expected, desired)

1 if v = expected then

2 v ← desired;
3 return True

4 else

5 return False



12 Dmitriy Smirnov and Dmitriy Morozov

402 × 33 1602 × 135 6402 × 540

10−1

100

101

102

103

6.92

535.07

7.1 · 10−2

0.67

6.84

75.52

774.64

4.2 · 10−2

0.36

2.92

24.3

219.79

Domain size

S
ec

o
n

d
s

Pumice

Path merging

Kruskal’s

Triplet

Fig. 1.7 Running time of the three algorithms as a function of input size, on downsampled
Pumice data set.

Algorithm 8: Parallel ComputeMergeTree2(G)

1 foreach vertex u ∈ G do in parallel

2 T [u]← (u, u);
3 foreach edge (u, v) ∈ G do in parallel

4 if f(v) < f(u) then

5 Merge(T, u, u, v)
6 else

7 Merge(T, v, v, u)

8 foreach u ∈ T do in parallel
9 Repair(T, u)

10 return T

Algorithm 8 adapts Algorithm 3 to the parallel setting by executing its
for-loops in parallel. We assume that the triplet representation T is stored
in a container that allows concurrent insertion of elements (for example, a
concurrent hash map), so that the first for-loop can execute in parallel.

The second for-loop runs in parallel over the edges of the input graph
and invokes the Merge algorithm, Algorithm 9, adjusted to use DWCAS for
synchronization. The third for-loop performs Repair, as before.

Correctness. To understand the correctness of the second for-loop and
Algorithm 9, we interpret the state of the data structure as the normalized
representation T , together with a complete list of triplets, (u, u, v) or (v, v, u),
one for each edge, as prescribed by Theorem 1. Each invocation of Algorithm 9
is assigned one of the outstanding triplets — the algorithm receives the triplet
as the arguments u, s, v. In a single instantiation, before or via the recursive
call, it transforms the state of the data structure:
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Algorithm 9: Parallel Merge(T, u, s, v)

. equivalent to (u, su, u′)← Representative(T, u, f(s))
1 (su, u′)← T [u];

2 if f(su) < f(s) then

3 return Merge(T, u′, s, v)

. equivalent to (v, sv , v′)← Representative(T, v, f(s))

4 (sv , v′)← T [v];
5 if f(sv) < f(s) then

6 return Merge(T, u, s, v′)

7 if u = v then return;

8 if f(v) < f(u) then
9 swap((u, su, u′), (v, sv , v′))

10 if DWCAS(T [v], (sv , v′), (s, u)) then

11 Merge(T, u, sv , v′);
12 else

13 Merge(T, u, s, v);

1. by modifying its assigned triplet, from (u, s, v) to (u′, s, v) or (u, s, v′), via
the recursive calls in lines 3 or 6;

2. by modifying the triplet representation T in line 10 and replacing the
triplet (u, s, v) with (u, sv, v

′), in line 11;
3. by implicitly removing the triplet by returning in line 7.

Each such operation, when applied in isolation, keeps the state before the
transformation equivalent to the state after the transformation. This follows
from arguments very similar to the proofs of Lemmas 1 and 2.

T ∪ (u1, s1, v1) ∪ . . . ∪ (u, s, v) ∪ . . . ∪ (um, sm, vm)

T ′ ∪ (u1, s1, v1) ∪ . . . ∪ (u, sv, v
′) ∪ . . . ∪ (um, sm, vm)

'

We claim that if multiple invocations of the algorithm modify the state
concurrently, the transformations that they apply are linearizable, in the sense
of Herlihy and Wing [11].

To see why this is so, we identify the linearization points, at which the
transformations appear to occur atomically. In case of the first two recursive
calls, in lines 3 and 6, the preceding reads in lines 1 and 4 act as linearization
points. Even though there are no side effects — different invocations of
Algorithm 9 do not see each other’s triplets, and the triplet representation
is not modified — the operation is equivalent to atomically deciding that
T ∪ (u, s, v) is equivalent to T ∪ (u′, s, v) or T ∪ (u, s, v′).

If the condition u = v in line 7 is satisfied, then triplet (u, s, v) is redundant
and the return statement in that line is equivalent to its removal, which also
appears atomically.
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Fig. 1.8 The effect of the DWCAS transformation in line 10 of Algorithm 9.

What happens when we reach line 10? In this case, the function values are
ordered: f(u) < f(v) < f(s) < f(sv). When this is true, the representation
T ∪ (v, s, u) is equivalent to the representation T ′ ∪ (u, sv, v

′), where T ′ has
triplet (v, sv, v

′) replaced by the triplet (v, s, u); see Figure 1.8. (The proof
here is similar to the proof of Lemma 2.) If DWCAS in line 10 succeeds, then
this transformation appears atomically. If it fails, we simply retry via the
recursive call in line 13. We note that in this case we do not guarantee that
the triplet (u, su, u

′) is not changed in the representation T , i.e., the edge
going out of the vertex u in the induced digraph may change, so that its new
label s′u is such that f(s′u) < f(s). In this case, the transformation is still valid

— the representations remain equivalent — but the transformed representation
ceases to be minimal. Since we already do not maintain minimality during the
second for-loop of Algorithm 8, but rather restore it via the Repair procedure
in the third for-loop, this situation requires no special handling.

Finally, the third for-loop of Algorithm 8 requires no special attention since
Repair procedure, Algorithm 6, can already execute in parallel. Since it only
changes the target of any edge in the diagraph, i.e., only the third component
of any triplet, the result that it obtains is the same even if other threads are
simultaneously modifying the triplets it encounters. Suppose Repair changes
entry T [u] from (s, v) to (s, v′), and suppose a different Repair procedure
queries the entry T [u] as part of its search for a representative of a vertex u′

at level a. If a < f(s), then the change is irrelevant, since u is the desired
representative. If a ≥ f(s), then the search needs to test the entry T [v′], since
if the original Repair procedure was changing T [u] from (s, v) to (s, v′), then
all the edges on the path from v to v′ have labels si, with f(si) < f(s). It
makes no difference whether the second Repair procedure goes directly to v′

or traverses the original path.

Evaluation. We perform experiments on the same datasets, Z2, Vertebra,
Pumice, as in the previous section, but now we vary the number of threads
used for the computation. We use Intel’s Thread Building Blocks library
for parallelization, using its concurrent_unordered_map to store the triplet
representation.

As a baseline, we compare to Algorithm 1 and Algorithm 3. The significance
of the latter is that unlike Algorithm 8, it is implemented without atomic
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Fig. 1.9 Scaling of Algorithm 9 as a function of the number of threads, on Z2 dataset.
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Fig. 1.10 Scaling of Algorithm 9 as a function of the number of threads, on Vertebra
dataset.

variables.4 Figures 1.9, 1.10, 1.11 illustrate the results of our experiments.
Unfortunately, simply turning on atomics roughly doubles the running time.
As the thread count increases, the parallel algorithm outperforms the serial
(when using 4 threads in all cases). Although the scaling trails off, we believe
the higher thread counts are still worthwhile, especially, in the (common)
situation where those cores would remain idle otherwise.

4 This is important because in C++, once a variable is declared std::atomic, all operations
on it are protected by atomic primitives and incur the corresponding overheads.
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Fig. 1.11 Scaling of Algorithm 9 as a function of the number of threads, on Pumice

dataset.

1.5 Conclusion

We have described a new representation of merge trees. Instead of recording
the nesting of sublevel set components, it records the nesting of the branches
of merge trees. We have presented algorithms to construct the merge trees
in this representations directly, as well as their parallel versions, together
with experimental results demonstrating that these algorithms are efficient in
practice.

Conspicuously missing from our paper is the complexity analysis of the new
algorithms. An O(mn) upper bound for Algorithm 3 is obvious: for each edge,
the algorithm touches each vertex at most once (in the amortized sense). It is
also not difficult to construct an example on which Algorithm 3 would take
quadratic time. However, all such examples that we know of require specifying
not only the graph and the function, but also the sequence in which edges
must be added. This leaves us hopeful that it is possible to show that the
randomized version of Algorithm 3 is also efficient in theory. We view this as
the main open question left by our paper.
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