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Abstract such a test, the hypothesis is not falsifiable and, by popular
i . . . philosophical interpretation, not scientific [13]. The fau-

By de_flnltlon, transverse intersections are stable under in |, fie|q discussed in [15] is the mathematical study of singu

finitesimal perturbations. Using persistent homology, we € |4 ities of smooth mappings, which is dominated by qualita-

tend this notion to sizeable perturbations. Specifically, W o statements. We refer to the seminal papers by Whitney

assign to each _homology class of f[he intersection itsf rqbust [17, 18] and the book by Arnold [1] for introductions. A uni-
ness, the magnitude of a perturbation necessary to kilidt, a fying concept in this field is the transversality of an intars

prove that robustness is stable. Among the applications Oftion between two spaces. Its roots go far back in history and

this regult is a stab!e notion of robustness for f_i>.<ed points appear among others in the work of Poincaré about a cen-

of continuous mappings and a statement of stability for con- tury ago. It took a good development toward its present form

tours of smooth mappings. under Pontryagin and Whitney; see eg. [14]. In this review

of Zeeman’s book [19], Smale criticizes the unscientific as-

pects of the work promoted in then popular area of catastro-

phe theory, thus significantly contributing to the discossi

of qualitative versus quantitative statements and to tteed

1 Introduction that field. At the same time, Smale points to positive aspects
_ ) ) _ - and stresses the importance of the concept of transvgrsalit

The main new concept in this paper is a quantification of i, the study of singularities. In a nutshell, an interseti®

the classically differential notion of transversality. i8S transverse if it forms a non-zero angle and is therefordestab
achieved by extending persistence from filtrations of hemol e infinitesimal perturbations; see Section 2 for a férma
ogy groups to zigzag modules of well groups. definition.

Keywords. Smooth mappings, transversality, fixed points, con-
tours, homology, filtrations, zigzag modules, persistentability.

Motivation. In hind-sight, we place the starting point for ) )

the work described in this paper at the difference between Results. We view our work as a measure theoretic exten-
qualitative and quantitative statements and their relesan Sion of this essentially differential concept. We extend by
in the sciences; see eg. the discussion in Thom's book [15,relaxmg the requ!rements on the perturbatmns to cquBuo
Chapters 1.3 and 13.8]. It appears the conscious mind thinkg?ut N0t necessarily smooth mappings. At the same time, we
in qualitative terms, delegating the quantitative detailthe are more tolerant to changes m_the mter.sectlon.. To rationa
unconscious, if possible. In the sciences, quantitataest 128 this tolerance, we measure intersections using real num
ments are a requirement for testing a hypothesis. Without P€rs as opposed for non-existence and for existence.

The measurements are made using the concept of persistent
*'ThiS research is partially sdupported by the Defense Ad\mﬁt?@earch homo'ogy; see [7] for the Origina' paper and [5] for a recent
gg?’fgtgségency (DARPA) under grants HR0011-05-1-000718R0011- g yey However, we have need for modifications and use the
TDepartments of Computer Science and of Mathematics, Duleetin extension of perS|stence_ from filtrations to zigzag r_nOdU|es

sity, Durham, North Carolina, Geomagic, Research Triamgek, North as proposed in [2]. An important property of persistence,

Cagotl)lga;jzrr;delnst; Sucsgrl: (LTZ:Itgtc?e?]f;C;ZCsf?\;llgt;:rf?eaﬂéu;gz)fﬁi- as originally defined for filtrations, is the stability of ita-

versity pStanford Ca"fomi‘; ' grams; see [4] for the original proof. There is no comparably
§Department of Computer Science, Duke University, DurharortiN genera_l reS.UH k_nOW.n for Zigzag modules. .Our main resylt IS

Carolina, and IST Austria (Institute of Science and TecbgplAustria). a step in this direction. Specifically, we view the following




as the main contributions of this paper: We are interested in properties ffthat are stable under
. ) ) perturbations. We call a properityfinitesimally stablef for
1. the introduction of th_e zigzag module of well groups every smooth homotopy; : X x [0,1] — Y with fo = £,
and the proof that their diagrams are stable; there is a real numbe@r> 0 such thatf, possesses the same
2. the interpretation of the values in these diagrams asproperty for allt < §, wheref,;(z) = F(z,t) for all z € X.
measurements of transversality, referred to as the ro-An important example of such a property is the following.
bustness of intersections; The mappingf is transverseto A, denoted agf M A, if
for eachx € X with f(z) € A, the image of the derivative
of f atz together with the tangent spacedfata = f(z)
spans the tangent space¥fat a. More formally, f M A
Our results have also ramifications in the study of the set of if Df(2)(T.X) + T,A = T,Y. Itis plausible but also true
critical values, the apparent contour of a smooth mapping. that transversality is an infinitesimally stable property.
Specifically, the stability of the diagrams mentioned above

completes the proof of the stability of the apparentconedur  pyoqyct spaces. It is convenient to recast transversality in

a smooth mapping from an orientaienanifoldto the plane - (orms of intersections of subspaces of the product skace
given in [8]. The need for this stability result was indeed Y, a manifold of dimensiom: + n. Consider the graphs of

3. the application of these results to fixed points and peri-
odic orbits of continuous mappings.

what triggered the development described in this paper. £ and of its restriction ta\
Outline. Section 2 provides the relevant background. Sec- gff = {(z,y) eXxY|y=f(z)}
tion 3 explains how we measure robustness using well groups gf fla = {(z,a) eXxA|a=f(x)}

and zigzag modules. Section 4 proves our main result, the

stability of the diagrams defined by the modules. Section 5 The intersection of interest is betweghf andX x A, two
discusses applications. Section 6 concludes the paper. manifolds of dimensions: andm + k embedded ifX x Y.
This intersection is the graph ¢fa, which is homeomorphic
to the preimage of\. See Figure 1 for an example in which

2 Background

We need the algebraic concept of persistent homology to ex-

Y
tend the differential notion of transversality as expldine
the introduction. In this section, we give a formal definitio A= {a} Xxa
of transversality, referring to [11] for general backgrdumn $ e O ©Q

differential topology. We also introduce homology and per- 8t f

sistent homology, referring to [12] for general backgroimd
classic algebraic topology and to [6] for a text on computa-
tional topology.

Figure 1: The preimage af, consisting of four points on the hori-
zontal axis representing, is homeomorphic to the intersection of
the curve with the horizontal line passing through

Transversality. Let X,Y be manifolds,f : X — Y a
smooth mapping, andl C Y a smoothly embedded subman-
ifold of the range. We assume the manifolds have finite di-
mension and no boundary, writing = dim X, n = dim Y,
and k = dimA. Given a pointz € X and a smooth
curvey : R — X with 4(0) = z, we call¥(0) the tan-
gent vectorof v at . Varying the curve, we get a set
of tangent vectors called thangent spacef X at x, de-
noted asT,X. Composing the curves with the mapping,
fo~v:R — Y, we get asubset of all smooth curves pass-
ing throughy = f(x) = f o v(0). Thederivativeof f at
zisDf(z) : T,X — T,Y defined by mapping the tan-
gent vector ofy atx to the tangent vector of o v aty. The

m =n = 1 andk = 0. Here,T,A = 0 and transversal-
ity requires that whenever the cungd,f, intersects the line,

X x A, it crosses at a non-zero angle. This is the case in Fig-
ure 1 which implies that having a cardinality four preimage
of a is an infinitesimally stable property gf Nevertheless,
the left two intersection points are clearly more stablentha
the right two intersection points, but we will need some al-
gebrato give precise meaning to this statement.

derivative is a linear map and its image is a subspadg, &f. Homology. The algebraic language of homology is a

The dimensions of the tangent spacesare: dim T, X and means to define and count holes in a topological space. We
n = dim T, Y, which implies that the dimension of the im-  think of it as a functor that maps a space to an abelian group
age of the derivative idim D f (x) (T, X) < min{m, n}. and a continuous map between spaces to a homomorphism



between the corresponding groups. We have such a func-

tor for each dimensiory. It is convenient to combine the
homology groups of all dimensions into a single algebraic
structure. WritingH,,(X) for the p-dimensional homology
group of the topological spacg, we form a graded group
by taking direct sums,

HX) = @H).

p=0

To simplify language and notation, we will suppress dimen-
sions and refer tdH(X) is the homology groupof X. Its
elements are formally written as polynomials, + oyt +

ast? + ..., wherea, is anp-dimensional homology class
and only finitely many of the classes are non-zero. As usual,
adding two polynomials is done componentwise. The groups
H,(X) depend on a choice of coefficient group. The theory
of persistence introduced below requires we use field coef-
ficients. An example is modulo two arithmetic in which the
field isZy = {0, 1}. Thep-dimensional group is then a vec-
tor spaceH, (X) ~ ng, and its rank, the dimension of the
vector space, is thg-th Betti number3, = §,(X). Simi-
larly, H(X) is a vector space of dimension, ., 3,. We say

X andY have the same homologyhere is an isomorphism
betweenH(X) andH(Y) whose restrictions to the compo-
nents are isomorphisms. Equivalentty,(X) = 5,(Y) for

all non-negative integeis

Persistent homology. Now suppose we have a finite se-
guence of nested spaces; C X, C ... C X,. Writing
®; = H(X;) for the homology group of théth space, we

death

(i, )

birth

<

Figure 2: The three off-diagonal points represent the hinithdeath
of three generators. The number of points in the upper-leftigant
equals the rank of the corresponding homology group.

point on the diagonal to the diagram. Given an indexye
can read off the rank dfi(X;) by counting the points in the
half-open upper-left quadrart; oo, 7] x (i, o], anchored at
the point(i, ¢) on the diagonal. More generally, the rank of
the image ofp; ; equals the number of points in the upper-
left quadrant anchored &t j).

Stability. Consider now the case in which the spaces in the
sequence are sublevel sets of a real valued fungtiok —

R, that is, there are values such thatX; = ¢~*(oo, 7]

for eachi. A homological critical valueof ¢ is a valuer
such that for every sufficiently small > 0, the homomor-
phism fromH(¢ ! (—o0, 7 — 8]) to H(p ™ (—o0, r + §]) in-
duced by inclusion is not an isomorphism. We suppgse
is tameby which we mean that each sublevel set has finite

get a sequence of vector spaces connected from left to rightrank homology and there are only finitely many homologi-

by homomorphic maps induced by inclusion:

PP - Dy — ... — Dy

We call this sequencefdtration. To study the evolution of
the homology classes as we progress from left to right in the
filtration, we lety; ; be the composition of the maps between
®; and®;, fori < j. We say a class € ®; is bornat ; if

it does not belong to the image @f_; ;. Furthermore, this
classa dies enteringd; if ¢; j_1(«) does not belong to the
image ofy,_1 ;1 buty; ;(a) does belong to the image of
vi—1,;. We call the images of the maps ; the persistent
homology group®f the filtration and record the evolution
of the homology classes in theersistence diagramf the
filtration, denoted a®gm(®P). This is a multiset of points

in the extended plan&®? = (R U {—o0,00})?. Marking

an increase in rank on the horizontal, birth axis and a drop
in rank on the vertical, death axis, each point represests th

birth and the death of a generator and records where these

cal critical values, denoted as < 7, < ... < ry. We can
represent the evolution of the homology classes by the finite
filtration consisting of the groupB; = H(yp~!(—oc0, r;]) for

1 < i < (¢ and by the persistence diagram of that filtra-
tion, D = Dgm(®). Lettingy : X — R be another tame
function, we get another filtrato®;, and another persistence
diagram,F = Dgm(¥). Thebottleneck distancbetween
the two is the infimum, over all bijectiong, : D — F, of

the L..-length of the longest edge in the matching,

Wao(D,E) = infsup la— pu(a)]

K aeD

= .
An important result is the stability of the persistence daag
under perturbations of the function.

STABILITY THEOREM FORTAME FUNCTIONS[4]. Let
¢ andy be tame, real-valued functions ¢i Then the
bottleneck distance between their persistence diagrams is
bounded from above by — || ..

events happen; see Figure 2. For technical reasons that wilHere, || — ¥|| . = sup,cx |¢(z) — ¢(x)|, as usual. The

become clear shortly, we add infinitely many copies of each

original form of this result is slightly stronger as it rasts



itself to dimension preserving bijections. The theorem im-

haveh, ' (0) C f,'[0,p]. This inclusion induces a homo-

plies that the bottleneck distance between the diagrams deimorphism between the corresponding homology groups,

fined by andy goes to zero as the difference between the
two functions approaches zero.

3 Measuring Robustness

The main new concept in this section is the well diagram of
the distance function defined by a mappifig X — Y and

a submanifoldd C Y. It encodes the persistent homology
of the preimage of the submanifold. We begin by setting the
stage and introducing the well group of a sublevel set.

Admissible mappings. AssumeY is a Riemannian mani-
fold and write||y — al|,, for the distance between the points
y,a € Y assigned by the associated metric. et X — R

be defined by mapping each pointto the distance of its
image fromA, that is,

fa(z)

inf ||f(z) — ally.
We call f5 the distance functiordefined byf andA. The
level setof f, at a valuer is the preimage of that value,
f.'(r). Thesublevel sefor the same value;, is the union
of level sets at values at masbr, equivalently, the preimage
of [0, 7]. Writing A” for the set of points at distaneeor less
from A, we havef, '[0,7] = f~1(A").

In this paper, we limit the class of mappings to those with

jn : H(h ' (0)) — F(p),

where we simplify notation by writing(p) for H(f, 1[0, p]).

The image of this map, denoted asj,,, is a subgroup of
F(p). The intersection of subgroups is again a subgroup,
which motivates the following definition.

DEFINITION. Thewell groupof f,'[0,7] is the largest
subgroupU(r) € F(r) such that the image dJ(r) in F(p)
is contained i), .x_yimj,, whereh ranges over alp-
perturbations off andp = r + § for a sufficiently small

6 >0.

The reason for using- instead ofr-perturbations is tech-
nical and will become clear later. The requirement that the
perturbations be homotopic jfois not used in the proofs and
can therefore be dropped. However, removing the require-
ment changes the well groups and therefore the meaning of
our results. Similarly, we may obtain additional variants o
our results by modifying the definition of @aperturbation in
other ways.

Example. To illustrate the definitions, let us consider again
the example in Figure 1. The preimagefoft= {a} is a set
of four points. The distance functiofi, : X — R, has three
homological critical values;; > ro > rs, with r; the value
of the critical point off between the-th and(i+ 1)-st points

manageable properties. While our goal is a statement of ourof f;*(0) from the left. Table 1 shows the ranksf(f-) and

results in a context that is sufficiently broad to support in-
teresting applications, we are aware of the technical lurde
that comes with generality. We hope that the following class

of mappings gives a happy median between the conflicting

goals of generality and transparency.

DEFINITION. LetX be anm-manifold,Y a Riemannian
n-manifold, andA a k-dimensional submanifold of. A
continuous mapping : X — Y is admissibléf f~1(A) has
a finite rank homology group.

Requiring that the preimage @f has finite rank homology
is strictly weaker than demanding that the distance functio
defined byf andA is tame.

Well groups. Leth : X — Y be a mapping homotopic to
f, thatis, there is a continuous mappifig: X x [0,1] — Y
with H(z,0) = f(z) andH(xz,1) = h(z) forall z € X.
We call i a p-perturbationof f if || — f||, < p, where
the norm of the difference is the supremum overalt X

of the distance betweedin(x) and f(x) in Y. The preimage
of A under ap-perturbation is contained in the preimage of
A” underf. Writing this in terms of distance functions, we

U(r) for values ofr in the four intervals delimited by the
homological critical values. Whenpasses from smaller to

| [0,73) [rs,r2) [ra,r1) [r1,00)
Fr) | 4 3 2 1
uir) | 4 2 2 0

Table 1: The ranks of the homology and well groups defineder t
mappingf and the submanifold. = {a} in Figure 1.

greater thamrz, two intervals of the sublevel set merge into
one. We thus go from four to three intervals; see the first
two numbers in the first row of Table 1. At the same time,
the rank of the well group drops from four to two. Similar
differences betweeR(r) andU(r) can be observed when
passes- and finallyr;.

Terminal critical values. Recall that we assume the map-
ping f : X — Y is admissible. The initial homology group,
F(0) = H(f,'(0)), has therefore finite rank, and because
U(0) C F(0), the initial well group has finite rank. Imagine
we grow the sublevel set by gradually increasirfgom zero

to infinity. Since the admissibility of does not imply the



tameness of the distance function, this leaves open thé poss particular its kernelK; = U; N ker f; ;+1, which we refer
bility that f has infinitely many homological critical values. to as thevanishing subgroupf U;. Using this subgroup, we
We call a radiusy, aterminal critical valueof f if for every constructQ; = U;/K;. The forward mapa; : U; — Q;, is
sufficiently smalld > 0 the homomorphism frorf(r — §) defined by mapping a clagso £+K;,. Itis clearly surjective.

to F(r + &) applied toU(r — ¢) does not giveJ(r + §). In The backward maph; : U;11 — Qq, is defined by mapping
contrast to the homological critical values, there can dm@ly  a class) to £ + K;, where belongs tof;il_H(n). This map

a finite number of terminal critical values. To see this, we is clearly injective. Instead of a filtration in which all map
note that the set of images whose common intersection is thego from left to right, we get a sequence in which the maps
well group cannot decrease and the rank of the well group alternate between going forward and backward. As indicated
can therefore not increase. To state this relationshipdetw  below, every other group in the sequence is a subgroup of the
well groups more formally, we writé(r, s) : F(r) — F(s) corresponding homology group,

for the homomorphism induced by inclusion.

. b; 1 a; b; a;t1
SHRINKING WELLNESSLEMMA. For each choice of Qi1 — U = Q < Ugp = Qin
radii0 < r < s, the image of the well group atcontains 1 !
the well group as, that is,U(s) C f(r, s)(U(r)). — Fi — Fit1 —

It follows the only way the well group can change is by low- \we call this sequence theell moduleof £, denoted as.
ering its rank. Since we start with a finite rank well group \we remark thatU is a special case of a zigzag module as
atr = 0, there can only be finitely many terminal critical jntroduced in [2]. It is special because all forward maps are
values, which we denote ag < uz < ... < w. To this surjective and all backward maps are injective. Equivient
sequence, we adey = 0 on the left and; ;1 = oo on the there are no births other thanlag.

right. It is convenient to index the homology groups and the

well groups accordingly, writing; = F(r;) andU; = U(r;)

for all i. To these sequence, we afld; = U_; = 0 on Left filtration.  Perhaps surprisingly, the evolution of the
the left andF;, > = U; 1> = 0 on the right. Furthermore, we  homology classes can still be fully described by pairing
write f; ; : F; — F; for all feasible choices of < j. births with deaths, just like for a filtration. To shed light

on this construction, we follow [2] and turn a zigzag mod-
Well module. In contrast to the homology groups, the well  ule into a filtration. In our case, all births happenlaf,
groups of the sublevel sets do not form a filtration. Instead, SO this transformation is easier than for general zigzag-mod
they form a special kind of zigzag module. By definition of ules. Writeug; : Us — F; for the restriction offy; to
terminal critical values, the rank df; exceeds the rank of  the initial well group. By the Shrinking Wellness Lemma,
Uir1. The rank of the imagd, ;.1 (U;), is somewhere be- the image of this map contains tli¢h well group, that is,

tween these two ranks. We call a difference betwegand Ui € uoi(Ug). We consider the preimages of the well
its image aconventional deatfin which a class maps to zero, 9roups inUo togetb?r with the preimages of their vanishing
and a difference between the image ahd; anunconven-  SUbgroupsi; = ug;(K;) andB; = ug ; (U;); see Figure 4.

tional death in which the image of a class lies outside the We note that; /A; _, ~ kera; andB;/B;;, ~ cokb;. In
next well group. We capture both cases by inserting a new Words, the first quotient represents the homology classes th

the homology classes that die an unconventional death. As

illustrated in Figure 4, the preimages form a nested seguenc

Figure 3: Connecting two consecutive well groups to the ignbt
group introduced between them. The clasdies a conventional
death and the clag$dies an unconventional death.

Figure 4: The left filtration decomposék) into the preimages of
this end, we consider the restriction §f; 1 to U; and in the well groups and the preimages of their vanishing sulpgrou



of subgroups ofJ,. Together with the inclusion maps, this 4 Proving Stability

gives theetft filtration of the zigzag module, . . . .
We are interested in relating the difference between map-

0—=A0—... = A1 =B — ... = Bo=Uo. pings to the difference between their well diagrams. After

We can recover the well groups with ~ B, /A;_;. Recall quantifying these differences, we connect parallel weltimo
thatU; o = 0, which impliesK;;; = U;,;. It follows that ules to form new modules, and we finally prove that the well
the middle two groups in the left filtratiom,;  ; andB;, 1, diagram is stable.

are indeed equal.

. o Distance between functions. Let X be anm-manifold,Y
Compatible bases. A useful property of the left filtration Riemanniam-manifold, andA C Y a k-manifold. Let

is.the existence of pompatible basgs of all !ts groups. By f.g: X — Y be two admissible mappings and assume they
this we mean a basis &f, that contains a basis for eagh are homotopic. Recall that the distance betwgendg is

and eacfB;. Specifically, we rewritd), as a direct sum of quantified by taking the largest distance between correspon
kernels of forward maps and cokernels of backward maps: ing images inY, that is
Ug ~ kerag@®...dkeraj; ®cokb; & ...® cokbg.

_ = su xXr) — T .
Reading this decomposition from left to right, we encounter 17~ lloe xe§||f() 9@l

theA; and theB; in the sequence they occur in the left filtra-
tion. Choosing a basis for each kernel and each cokernel, welsing A, we get two functionsfs, ga : X — R. Similar
thus get compatible bases for all groups in the left filtratio  t0 the mappings, the distance between them is the largest
We call this theeft filtration basisof Uo. It is unique upto  difference between corresponding values, that is,
choosing bases for the kernels and cokernels.

Consider now a homology classin U, and its represen- [fa—gall, = Sug |fa(@) — ga(z)].
tation as a sum of basis vectors. We writ@;) for the pro- e
jection of a to the kernel of the-th forward map, whichis  The two distances are related. Specifically, the distanee be
obtained by removing all vectors that do not belong the the tween the functions cannot exceed the distance between the
basis ofkera;. Similarly, we writea(b;) for the projection mappings.
of a to cok b;. Letting 7 be the minimum index such that
a(a;) = a(b;) = 0foralli > j, we say thaty falls ill atu;. DISTANCE LEMMA. Let f4,gs : X — R be the func-

tions defined by the mappingsg : X — Y and the sub-

Well diagrams. Constructing the birth-death pairs that de- manifoldA C Y. Then|| fa — gall.. < |If — 9l -
scribe the well module is now easy. All classes are born at
Uo, however, to distinguish the changes in the well group PROOF We prove a stronger result, namely that the claimed
from those in the homology group, we say all the clagsgs  inequality holds everywhere, that is,
well at Uy. They fall ill later, and once they fall ill, they do
not get well any more. The drop in rank frod to U; 1 is [fa(@) —ga(@)] < [If(z) —g(@)ly 1)
w; = rank(ker a;) 4+ rank(cok b;). We thus havey; copies . o .
of the point(0, u; ) is the diagram. There is no informationin ~ at €very point: € X. We may simplify this inequality by
the first coordinates, which are all zero. We thus define the @ssuming thaf, () — ga(z) is non-negative. Suppose there
well diagramas the multiset of points; with multiplicites ~ €Xists apoint, € A for which g, (z) = [la — g(x)||. Being
11, denoting it asDgm(U). For technical reasons that will & metric, the distance ili obeys the triangle inequality, and
become obvious in the next section, we add infinitely many in particular
copies of0 to this diagram. Hence, each pointiigm(U) is
either0, a positive real number, ao, and the diagram itself la—g(@)lly +llgx) = f@)ly = lla—f@)ly.
is a multiset of points on the extended lifie= R U {+00}.
It has infinitely many points dt and a finite number of non- i i ;
zero points. pll_es (). Since we did not assume tmts cpmp_act, there

As suggested by the heading of this section, we think of might not be a point at whlctg_(:c) a“‘.""”s its distance to
each point in the diagram as a measure for how resistant g But for everys > 0, there IS a pf)'r_‘b €A S_UCh th"?‘t
homology class off ~(A) is against perturbations of the 9a(z) +6 2 [la — g(2)||y. Plugging this into the triangle in-
mapping. At each well group;, an entire set of homol-  €duality above givega (z) — ga(z) — 6 < [[f(z) — g(@)lly-
ogy classes falls ill, and we call; the robustnesof each ~ -€ttingd go to zero, we get (1).
classa in this set, denoting it ag(a) = u;.

The right hand side is an upper bound fr(x) which im-



Distance between diagrams. Let G(r) be the homology =~ Lemma, we have| fo — gall,, < e, which implies that the
group andV(r) C G(r) the well group ofg, [0, r]. As for sublevel set ofy, for radiusr is contained in the sublevel
f, we insert quotients between contiguous well groups and set of f, for radiusr + €. Hence, there is a homomorphism
connect them with forward and backward maps to form a B, : G(r) — F(r + ¢), which we call thebridge from G
well module, denoted as. The corresponding well diagram, to F at radiusr. We use the bridge to connect the initial
Dgm(V), is again a multiset of points iR, consisting of in- segment ofG to the terminal segment ¢f. The endpoints
finitely many copies of) and finitely many non-zero points.  of the bridge satisfy the property expressed in the Shrignkin
Recall that the bottleneck distance between the diagrams ofWellness Lemma.

f andg is the length of the longest edge in the minimizing

matching. Because our diagrams are one-dimensional, the BRIDGE LEMMA. LetB, : G(r) — F(r-+¢) be the bridge
bottleneck distance is easy to compute. To describe the algo atr, wheres = || f — g[| . ThenU(r + <) C B,.(V(r)).

rithm, we order the positive points in both diagrams, gettin ) .
PROOF. Leta be a homology group it (r + ). By defini-

0 < w < wp < ... < upg tion of well group, there is a sufficiently small > 0 such

0 < vy < v < ... < wy, thata belongs to the image ¢f(h=1(A)) in F(r +¢) for ev-

ery (r+¢e+4d)-perturbatiort of f. This includes al(r + ¢)-

where we add zeros to make sure we have two sequences Oberturbations ofy. It follows that the preimage af in G(r)

the same length. Thiaversion-free matchingairsu; with belongs to the well group, that 8! (o) € V(r).
v; for all i. We prove that this matching gives the bottleneck
distance.

Everything we said about bridges is of course symmetric
MATCHING LEMMA. Assuming the above notation, the in F andG. In other wordsf, '[0,r] € g, '[0,7 + ¢] and
bottleneck distance betwe&ym(U) andDgm(V) is equal  there is a bridge frorfi(r) to G(r + ¢) for everyr > 0.
to maxi<;<nm |uz — Ui|-

PrROOF For a given matching, we consider the vector of ab- New modules. Wle us]:e thehB”dgﬁ Lemrrlla tofconstruct
solute differences, which we sort largest first. Comparing new _Zf!gzﬁlg modules from the we hqu,u_ els pfand g. ¢
two such vectors lexicographically, we now prove that the Specifically, we use5, to connect the initial segment o

inversion-free matching gives the minimum vector. This im- V, from V(0) to V(r), to the terminal segment df, fr(_)m
plies the claimed inequality, U(r + ¢) to U(co). To complete the module, we insert

Q(r) = V(r)/ker B, betweenV(r) andU(r + ¢). The for-
Wao (Dgm(U),Dgm(V)) = max |u; — v, ward map, fromV(r) to Q(r), is surjective, and the back-
lsisM ward map, fronl(r+¢) to Q(r) is injective. The new zigzag
t module is thus of the same type as the well modules imply-
ing it has a left filtration basis that gives rise to a family of
compatible bases for the groups in the left filtration.

To prove minimality, we consider a matching that has at leas
one inversion, that is, pait@:, v;) and(u;,vs) with i < j
ands < t. If u; = u; orvs = v; then switching to the

pairs (u;,vs) and(u;,v;) preserves the sorted vector of ab- A particular construction starts with the filtratioRg)) —
solute differences. Otherwise, the new vector is lexicpgra ~ --- — F(c0) andG(0) — ... — G(oo0) and addsB, :
ically smaller than the old vector. Indeed, the minimum of G(0) — F(e). Following the bridge fronG to F at0, we get
the four points isu; or v, and the maximum is;; or v;. If a new filtration and a new zigzag module, denoting the latter

the minimum and the maximum are from opposite diagrams asW; see Figure 5. The decomposition\f(0) = V(0) by
then they delimit the largest of the four absolute differes)c

and this largest difference belongs to the old vector. Gther 0
wise, both absolute differences shrink when we switch the Fu
pairs. Repeatedly removing inversions as described eventu
ally leads to the inversion-free matching, which shows that
it minimizes the vector and its largest entry is the botttdne
distance.

<xs=

) 0 € € 0
Bridges. The main tool in the proof of stability are short
bridges between parallel filtrations. The length of these Figure 5: The four curves represent four filtrations as welfaur
bridges relates to the distance between the functions defin-the zigzag modules. The middle two are constructed from titero
ing the filtrations. Let = ||f —g||.. By the Distance  two by adding bridges connecting the dots.



the left filtration ofW is similar to the decomposition &f(0)

by the left filtration ofU; see Figure 4. Lettingbe the index
suchthat; < e < u; 41, we haveF(e) = F; andU(e) = U,.
The classes id;_; and inU,/B; die before we reach(e).
The remaining classes forbi(¢) ~ B;/A;_;. Correspond-
ingly, there are homology classes \M(0) that die before
we reachF (), namely the ones in the kernel of the forward
map, fromW(0) to Q(0), and in the preimage of the coker-
nel of the backward map, froti(¢) to Q(0). The remaining
classes fornW(e) ~ B, ! (U(¢e))/ker By. The two quotient
groups,U(e) andW(e), are decomposed in parallel so that
choosing a basis fdd(s) gives one folW(e). This will be
useful shortly.

Main result. We are now ready to state and prove the sta-
bility of the well diagram.

STABILITY THEOREM FORWELL DIAGRAMS. Let
U,V be the well modules of the functiorfs, g, defined by
the admissible, homotopic mappindisy : X — Y, where
X, Y, andA C Y are manifolds of finite dimension andis
Riemannian. Theh/ . (Dgm(U), Dgm(V)) < ||f — 9]/ -

PROOF We construct a bijection frogm(U) to Dgm(V)
such that the. .. -distance between matched points is at most
e = ||f —gll.- Specifically, we match each point< ¢ in
Dgm(U) with a copy of0 in Dgm(V), and we use the parallel
bases olU(e) andW(e) for the rest, wherdV is the zigzag
module obtained by adding the bridge frdo F at radius
0, as described above.

Let « belong to the left filtration basis d§(0) such that
its image belongs to the basisdfs). Letr be the value at
which « falls ill and note that- > ¢. Let 3 belong to the
left filtration basis ofvV(0) = W(0) such that the images of
a andg in W(e) = U(e) coincide. We now construct yet
another zigzag module, by adding a first bridge fré(m —
e—0)toF(r—¢) and a second bridge froR{r + ¢) back to
G(r+e+9), wheres > 0is sufficiently small such that there
are no deaths in the intervial— 0, r + 4], except possibly at
r. We denote the resulting module By see Figure 5. We

matching, this radius is paired wiih the radius at whicla
falls ill in U. The absolute difference between the two radii
is at most, as required.

5 Applications

In this section, we use the stability of the transversaligam
sure to derive stability results for fixed points, periodie o
bits, and apparent contours. All three problems can betecas
in terms of intersections between manifolds and are thegefo
amenable to the tools developed in this paper.

Fixed points. A fixed pointof a continuous mapping from

a topological space to itself is a point that is its own image.
Assuming this space is the-dimensional Euclidean space
andb is the mapping, we introduce a mappifig R™ — R™
defined byf (z) = = — b(z). Afixed point ofb is a root off,

thatis, f(z) = 0. Writing X = Y = R™ andA = {0}, the
origin of R™, we get the setting studied in this paper. Each
fixed pointz of b corresponds to a class in thelimensional
homology group off ~1(0). Using the methods of this paper,
we assign a non-negative robustness meagrg, to z. It
gives the magnitude of perturbation necessary to remose thi
fixed point. This does not mean that a perturbation of smaller
magnitude has a fixed point at precisely the same location
but rather that it has one or more fixed points in lieurof
Letting o(x) be the maximum robustness of all fixed points,
then this implies that every(x)-perturbation off has at least
one fixed point. This implication suffices to give a new proof
of a classic topological result on fixed points. [Bt be the
closed unit ball inR™.

BROUWER S FIXED POINT THEOREM. Every continu-
ous mapping : B™ — B™ has a fixed point.

PrROOF Extendb to a mapping fronR™ to R™ by defining
b(z) equal to its value at/||z||2 wheneverz ¢ B™. Let
f : R™ — R™ be defined byf(z) = = — b(z) and let

note that all maps between groups are induced by inclusiong : R™ — R™ be the identity, defined by(z) = z. We

so that the diagram formed by the filtrations and the bridges
between them commutes.

By construction, the image @fin F(r—4) is non-zero and
belongs taJ(r — 4). In contrast, the image @f in F(r + 9)
is either zero or lies outsidé(r + ). Applying the Bridge
Lemma going backward along the first bridge, we note that
the image of3 € W(0) = X(0) in G(r — € — §) is non-zero
and belongs t&/(r—e—4). Applying the Bridge Lemma go-
ing forward along the second bridge, we note that the image
of 3in G(r+e+4) is either zero or lies outsidé(r +c+4).
Since we can choose> 0 as small as we like, this implies
thatg falls ill somewhere in the intervét — &, 7 + ¢]. In the

may assume thaf is admissible, else the homology group
of £71(0) has infinite rank ang’ has infinitely many roots.
The other mappingg, is clearly admissible, with a single
root atx = 0. The distance between the two mappings is

1f =9l sup [|f(z) — g(x)l

rER™

sup [|b(z)|2,
rER™

which is at most. The well diagram of the identity consists
of a single, non-zero point at plus infinity. The StabilityeFh
orem for Well Diagrams implies that the well diagram fof



also has a point at plus infinity. But this implies thfahas a to R2. The pointz is critical if the derivative atr is not sur-
root and, equivalently, thathas a fixed point. jective, and thepparent contoupf f is the set of images of
critical points. Beyond smoothness pfwe assume that the

The above reduction of fixed points to a transversality set- distance functions it defines are admissible. Specificalty,
ting uses the difference between two points, an operation no €acha € R?, the functionf, : M — R is defined by map-
available if the mapping : M — M is defined on a general ~ Ping every pointz to f,(z) = || f(z) — al|, and we assume
Riemannian manifold. In this case, we can use the corre-thatf; ' (0) consists of a finite number of points.

spondence between the fixed point$@ind the intersection To study the apparent contour, we consider the entire
points between the graph band the diagonal itvl x M. To 2-parameter family of distance functions. Fixing a value
apply the results of this paper, we §&t= M, Y = M x M, a € RZ?, the sublevel sets of, form a filtration of ho-
andA = {(a/,2") | ' € M}. Furthermore, we define the mology groups and a zigzag module of well groups. Each
distance between two poinis= (z’,z”) andy = (v/, ") point in the preimage of, falls ill at a particular radius
in M x M equal to interpreted as the robustness of that point. The main re-
sult of this paper implies that this measure is stable, that i
00 if 2/ #£/; Weo (Dgm(U),Dgm(V)) < |[|fa — gallo, WhereU andV
=yl { le" —y" |y ifa' =y are the well modules defined by the mappirfgg: M — R

and the value: € R2. As shown in [8], this implies that the
Itis not difficult to see that this setting gives the same Btbu  apparent contours gfand ofg are close. The sense in which
ness values for the cab& = R™ discussed above. they are close is interesting in its own right and we refer to
that paper for details.

Periodic orbits. We generalize the above setting by allow-
ing for fixed points of iterations of the mapping. Lettiivj ; i
be a Riemannian manifold antl: Ml — M a mapping, we 6 Discussion

write f7 : M — M for the j-fold composition off with The main contribution of this paper is the definition of a ro-
itself. A sequence bustness measure for the homology of the intersection be-
‘ tween manifolds, and a proof that this measure is stable. The

Fi(x) = (x, f(x), f2(x), ..., [T (2)) question arises how different robustness is from persisten

_ o _ - , and whether there is a reduction of one to the other. We de-

is anorder-j periodic orbitof f if f/(z) = fofj_ll(x) = . scribe a setting in which the two are almost the same. Let

It is straightforward to see the following relationship be- x pe a manifoldy = R, andA = (—00,a]. In the persis-

tweenf and itsj-fold composite. tence diagram of : X — R, the points inf—oo, a] x (a, ]

correspond to classes aliveaatin other words, the quadrant
represents the homology groEf0) = H(A). Assumingu is
not a terminal critical value of, this is also the initial well

We can therefore use the methods of this paper to measuregrOUp'U(O) = F(0). Apoint(ry,rq) in this qua(_jrant_ satis-
the robustness of, that is, to determine how mugh needs 1657 < a < 74, and a clasa represented by this point falls

to be perturbed to remove the fixed point. However, it would Il 8t 2(&) = min{rq—a,a—ry}. In otherwords, the robust-
be more interesting to measure how mycheeds to be per-  N€SS ofw can be computed from its birth and death values in
turbed to remove the periodic orbit. This is different besgau the filtration of sublevel sets. We know of no such reduction

not every mapping can be written as tjidold composite 10 Persistence in more general settings. Perhaps, rolssstne

of another mapping. Adapting the framework accordingly is Sits gomewhere between th_e classiparameter n0t|0n_ of
not difficult. Substituting perturbatioris of f for those of persistence and th_e al_gebralcally _much Ies_s tractabl_e-mult
1, we intersect the images of the homomorphisms induced parameter generalization [3]. Besides staking out thid-lan

by hi. Call the resulting values the robustness of the periodic S¢2P€: _the result; n t,h's paper raise a number of questions
orbits of order;. and invite extensions in several directions.

ORBIT LEMMA. A pointz € M is a fixed point off7 iff
F;(x) is an orders periodic orbit off.

e There are no principle obstacles to generalizing the no-

Apparent contours. As mentioned in the introduction, [8] tion of robustness to non-manifold spaces. Are there ap-
reduces the stability of the contour of a mapping to the sta- plications that can drive th|s_ext§n5|op orisitfeasible to
bility of well diagrams, the main result of this paper. We ask for a most general setting in which our framework
briefly review the reduction. Lé¥I be a compact, orientable is meaningful?

2-manifold andf : M — R? a smooth mapping. The deriva- e Fixed points of mappings play an important role in
tive of f at a pointz is a linear map from the tangent space game theory [16]. Can the results of this paper be used



to gain better insights into the nature of fixed points References

as they arise in different games? What are contexts in
which the robustness of a fixed point is relevant to the
understanding of the dynamics of a game?

The three applications sketched in Section 5 barely
scratch the surface of the possible. An interesting di-
rection for further research are mappings from lower
to higher dimensions. For example, the boundary of a
computer-aided design model is the image of a mapping
from a2-manifold toR3. Can our results be used to de-
tect and remove accidental self-intersections, a problem
of significant economic importance [10].

Except for a few special settings, we have no algorithms
for computing well diagrams. The main obstacle is the
infinite set of perturbations that appears in the definition
of well groups. However, since the groups that arise for
admissible mappings are finite, only a finite number of
perturbations are relevant. Can we approach the algo-
rithmic question from this direction?
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