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Abstract. Distance functions to compact sets play a central role in several
areas of computational geometry. Methods that rely on them are robust to the
perturbations of the data by the Hausdorff noise, but fail in the presence of
outliers. The recently introduced distance to a measure offers a solution by
extending the distance function framework to reasoning about the geometry
of probability measures, while maintaining theoretical guarantees about the
quality of the inferred information. A combinatorial explosion hinders working
with distance to a measure as an ordinary power distance function. In this
paper, we analyze an approximation scheme that keeps the representation linear
in the size of the input, while maintaining the guarantees on the inference
quality close to those for the exact but costly representation.

1. Introduction

The problem of recovering the geometry and topology of compact sets from finite
point samples has seen several important developments in the previous decade.
Homeomorphic surface reconstruction algorithms have been proposed to deal with
surfaces in R3 sampled without noise [1] and with moderate Hausdorff (local) noise
[13]. In the case of submanifolds of a higher dimensional Euclidean space [20], or
even for more general compact subsets [5], it is also possible, at least in principle,
to compute the homotopy type from a Hausdorff sampling. If one is only interested
in the homology of the underlying space, the theory of persistent homology [15]
applied to Vietoris–Rips complexes provides an algorithmically tractable way to
estimate the Betti numbers from a finite Hausdorff sampling [7].

All of these constructions share a common feature: they estimate the geometry
of the underlying space by a union of balls of some radius r centered at the data
points P . A different interpretation of this union is the r-sublevel set of the distance
function to P , dP : x 7→ minp∈P ‖x− p‖. Distance functions capture the geometry
of their defining sets, and they are stable to Hausdorff perturbations of those sets,
making them well-suited for reconstruction results. However, they are also extremely
sensitive to the presence of outliers (i.e., data points that lie far from the underlying
set); all reconstruction techniques that rely on them fail even in presence of a single
outlier.

To counter this problem, Chazal, Cohen-Steiner, and Mérigot [6] developed a
notion of distance function to a probability measure that retains the properties of
the (usual) distance important for geometric inference. Instead of assuming an
underlying compact set that is sampled by the points, they assume an underlying
probability measure µ from which the point sample P is drawn. The distance
function dµ,m0 to the measure µ depends on a mass parameter m0 ∈ (0, 1). This
parameter acts as a smoothing term: a smaller m0 captures the geometry of the
support better, while a larger m0 leads to better stability at the price of precision.
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Crucially, the function dµ,m0 is stable to the perturbations of the measure µ under
the Wasserstein distance. Defined in Section 2.2, this distance evaluates the cost of
the optimal way to transport one measure onto another, where we pay for the squared
distance a unit mass travels. Consequently, the Wasserstein distance between the
underlying measure µ and the uniform probability measure on the point set P is
small even if P contains some outliers, since individual points support only a small
fraction of the mass. The stability result ensures that distance function d1P ,m0

to the uniform probability measure 1P on P retains the geometric information
contained in the underlying measure µ and its support.

Computing with distance functions to measures. In this article we address
the computational issues related to this new notion. If P is a subset of Rd containing
N points, and m0 = k/N , we will denote the distance function to the uniform
measure on P by dP,k. As observed in [6], the value of dP,k at a given point x is
easy to compute: it is the square root of the average squared distance from the
point x to its k nearest neighbors in P . However, many geometric inference methods
require a global representation of the sublevel sets of the function, i.e., the sets
d−1
P,k([0, r]) := {x ∈ Rd; dP,k(x) ≤ r}. It turns out that the distance function dP,k

can be rewritten as a minimum

(1) d2
P,k(x) = min

p̄
‖x− p̄‖2 − wp̄,

where p̄ ranges over the set of barycenters of k points in P (see Section 3). Compu-
tational geometry provides a rich toolbox to represent sublevel sets of such functions,
for example, via weighted α-complexes [14].

The difficulty in applying these methods is that to get an equality in Equation (1)
the minimum number of barycenters to store is the same as the number of sites in
the order-k Voronoi diagram of P , making this representation unusable even for
modest input sizes [9]. Our solution is to construct an approximation of the distance
function dP,k, defined by the same equation as (1), but with p̄ ranging over a smaller
subset of barycenters. In this article, we study the quality of approximation given
by a linear-sized subset — the witnessed barycenters, defined as the barycenters of
any k points in P whose order-k Voronoi cell contains at least one of the sample
points. The algorithmic simplicity of the scheme is appealing: we only have to
find the k − 1 nearest neighbors for each input point. We denote by dw

P,k and call
witnessed k-distance the function defined by Equation (1), where p̄ ranges over the
witnessed barycenters.

Contributions. Our goal is to give conditions on the point cloud P under which
the witnessed k-distance dw

P,k provides a good uniform approximation of the distance
to measure dP,k. We first give a general multiplicative bound on the error produced
by this approximation. However, most of our paper (Sections 4 and 5) analyzes
the uniform approximation error, when P is a set of independent samples from a
measure concentrated near a lower-dimensional subset of the Euclidean space.

(H) We assume that the “ground truth” is an unknown probability measure
µ supported on a compact set K whose dimension is bounded by `. This
means that there exists a positive constant αµ such that for every point x
in K and every radius r < diam(K), one has µ(B(x, r)) ≥ αµr`.
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A prototypical example is the volume measure on a compact smooth `-dimensional
submanifold K, rescaled to be a probability measure. In this case, the constant αµ
can be lower-bounded as a function of the dimension, the diameter, the `-volume
and the minimum sectional curvature of K. This can be derived from the Bishop–
Günther comparison theorem (e.g., see [6, Proposition 4.9]). This hypothesis on the
dimension of µ ensures that the distance to the measure µ is close to the distance
to the support K of µ, and lets us recover information about K.

Our first result asserts in a quantitative way that if the uniform measure to
a point cloud P is a good Wasserstein approximation of µ, then the witnessed
k-distance to P provides a good approximation of the distance to the underlying
compact set K. We denote by ‖.‖∞ the norm of uniform convergence on Rd, that
is ‖f‖∞ := supx∈Rd |f(x)|.

Witnessed Bound (Theorem 4.4). Let µ be a probability measure satisfying
the hypothesis (H) and let K be its support. Consider the uniform measure 1P on
a point cloud P , and set m0 = k/|P |. Then,

‖dw
P,k − dK‖∞ ≤ 3m−1/2

0 W2(µ,1P ) + 12α−1/`
µ m

1/`
0 ,

where W2(µ,1P ) is the Wasserstein distance between measures µ and 1P .

The above bound is only a constant times worse than a similar bound for the exact
k-distance which was proven in [6]. In other words, under the hypothesis of this
theorem the quality of the inference is not significantly decreased when replacing
the exact k-distance by the witnessed k-distance.

In order to make the Witnessed Bound more explicit, we give in Section 5 an
upper bound on the Wasserstein distance in the right-hand side of the inequality,
when the point cloud P follows a certain sampling model. This model generalizes
mixtures of isotropic Gaussians [12], and is similar to a model recently proposed
for topological inference [21]. We assume that the point cloud P comes from N
independent random samples of the underlying measure µ shifted by N isotropic
random Gaussian vectors centered at the origin and with variance σ2. We can then
control the Wasserstein distance in the Witnessed Bound with high probability:

lim
N→+∞

P(W2(µ,1P ) ≤ 5σ) = 0

This result is stated more quantitatively in Corollary 5.6. We also include a similar
result under a different model of noise in Corollary 5.4.

Outline. The relevant background appears in Section 2. We present our approxima-
tion scheme together with a general bound of its quality in Section 3. In Section 4,
we give the proof of the Witnessed Bound. The convergence of the uniform measure
on a point cloud sampled from a measure of low complexity appears in Section 5.
We illustrate the utility of these two bounds with an example and a topological
inference statement in our final Section 6.

2. Background

We begin by reviewing the relevant background on measure theory, Wasserstein
distances, and distances to measures.
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2.1. Measure. Let us briefly recap the few concepts of measure theory that we use.
A non-negative measure µ on the space Rd is a map from (Borel) subsets of Rd to
non-negative numbers, which is additive in the sense that µ (∪i∈NBi) =

∑
i µ(Bi)

whenever (Bi) is a countable family of disjoint (Borel) subsets. The total mass of
a measure µ is mass(µ) := µ(Rd). A measure µ with unit total mass is called a
probability measure. The support of a measure µ, denoted by spt(µ), is the smallest
closed set whose complement has zero measure. The expectation or mean of µ is the
point E(µ) =

∫
Rd xdµ(x); the variance of µ is the number σ2

µ =
∫
Rd ‖x−E(µ)‖2dµ(x).

Although the results we present are often more general, the typical probability
measures we have in mind are of two kinds: (i) the probability measure defined by
rescaling the volume form of a lower-dimensional submanifold of the ambient space
and (ii) discrete probability measures that are obtained through noisy sampling
of probability measures of the previous kind. For any finite set P with N points,
recall that 1P is the uniform measure supported on P , i.e., the sum of Dirac masses
centered at p ∈ P with weight 1/N .

2.2. Wasserstein distance. A natural way to quantify the distance between two
measures is the quadratic Wasserstein distance. This distance measures the L2-cost
of transporting the mass of the first measure onto the second one. Note that it is
possible to define Wasserstein distances with other exponents; for instance, the L1

Wasserstein distance is commonly called the earth mover’s distance [22]. A general
study of this notion and its relation to the problem of optimal transport appear
in [24]. We first give the general definition and then explain its interpretation when
one of the two measures has finite support.

A transport plan between two measures µ and ν with the same total mass is a
measure π on the product space Rd ×Rd such that for every pair of subsets A,B of
Rd, π(A×Rd) = µ(A) and π(Rd ×B) = ν(B). Intuitively, π(A×B) represents the
amount of mass of µ contained in A that will be transported to B by π. The set of
all transport plans between µ and ν is denoted by Γ(µ, ν). The cost of a transport
plan π is given by

c(π) :=
(∫

Rd×Rd

‖x− y‖2dπ(x, y)
)1/2

.

Finally, the Wasserstein distance between µ and ν is the minimum cost of a transport
plan between these measures, i.e.,

W2(µ, ν) = min
π∈Γ(µ,ν)

c(π).

Note that W2 is indeed a distance function; in particular, it satisfies the triangle
inequality on the space of probability measures on Rd with finite variance (cf. [24,
Theorem 7.12]).

Discrete target measure. Consider the special case where the measure ν is
supported on a finite set P . This means that ν can be written as

∑
p∈P apδp, where

δp is the unit Dirac mass at p. Moreover,
∑
p ap must equal the total mass of µ.

Given a family of non-negative measures (µp)p∈P such that mass(µp) = ap and
µ =

∑
p∈P µp, one can define a transport plan π between µ and ν by

π =
∑
p∈P

µp × δp,
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where µp×νp denotes the product measure. Moreover, all transport plans between µ
and ν can be written in this way. The cost of the plan associated to a decomposition
(µp)p∈P is then

c(π) =

∑
p∈P

[∫
Rd

‖x− p‖2dµp(x)
]1/2

.

As before, W2(µ, ν) is the minimum of this quantity over all transport plans.

Wasserstein noise. Two properties of the Wasserstein distances are particularly
useful to us. Together, they show that the Wasserstein noise and sampling model
generalize the commonly used empirical sampling with Gaussian noise model:

• Consider a probability measure µ and f : Rd → R, the density of a probabil-
ity measure centered at the origin, with finite variance σ2 :=

∫
Rd ‖x‖2f(x)dx.

Denote by ν the result of the convolution of µ by f . Then, the quadratic
Wasserstein distance between µ and ν is at most σ. This follows for instance
from [24, Proposition 7.17].

• Let P denote a set of N points drawn independently from the measure ν.
Suppose also that the ν has small tails, e.g., ν(Rd \ B(0, r)) ≤ exp(−cr2)
for some constant c. Then, the Wasserstein distance W2(ν,1P ) between ν
and the uniform probability measure on P converges to zero as N grows to
infinity. Examples of such asymptotic convergence results are called “the
uniform law of large numbers” and are common in statistics (see for instance
[4] and references therein).

Using the notation and assumptions of the two items above, and using the triangle
inequality for the Wasserstein distance, one has for any positive ε:

P
(

W2(1P , µ) > (1 + ε)σ
)
≤ P

(
W2(1P , ν) > εσ

)
Consequently, the probability that W2(1p, µ) is at most (1 + ε)σ converges to 1 as
N grows to infinity. If one assumes that µ satisfies (H), Corollary 5.6 below gives a
similar but more quantitative statement.

2.3. Distance-to-measure and k-distance. In [6], the authors introduce a dis-
tance to a probability measure as a way to infer the geometry and topology of this
measure in the same way the geometry and topology of a set is inferred from its
distance function. Given a probability measure µ and a mass parameter m0 ∈ (0, 1),
they define a distance function dµ,m0 which captures the properties of the ordinary
distance function to a compact set that are used for geometric inference.

Definition 2.1. For any point x in Rd, let δµ,m(x) be the radius of the smallest ball
centered at x that contains a mass at least m of the measure µ. The distance to the
measure µ with parameterm0 is defined by dµ,m0(x) = m

−1/2
0

(∫m0
m=0 δµ,m(x)2dm

)1/2.
The parameter m0 acts as a smoothing term: a smaller value captures the

geometry of the support better, while a larger value leads to better stability at the
price of precision. This balance is well captured by the inequality in Theorem 4.2
below. Given a point cloud P of N points, the measure of interest is the uniform
measure 1P on P . When m0 is a fraction k/N of the number of points (where k
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is an integer), we call k-distance and denote by dP,k the distance to the measure
d1P ,m0 . The value of dP,k at a query point x is given by

d2
P,k(x) = 1

k

∑
p∈NNk

P
(x)

‖x− p‖2,

where NNk
P (x) ⊆ P denotes the k nearest neighbors in P to the point x ∈ Rd. (Note

that while the k-th nearest neighbor itself might be ambiguous, on the boundary
of an order-k Voronoi cell, the distance to the k-th nearest neighbor is always well
defined, and so is dP,k.)

The most important property of the distance function dµ,m0 is its stability,
for a fixed m0, under perturbations of the underlying measure µ. This property
provides a bridge between the underlying (continuous) µ and the discrete measure 1P .
According to [6, Theorem 3.5], for any two probability measures µ and ν on Rd,

(2) ‖ dµ,m0 −dν,m0 ‖∞ ≤ m
−1/2
0 W2(µ, ν),

where W2 is the Wasserstein distance. The multiplicative constant m−1/2
0 in this

bound illustrates the fact that a larger m0 leads to a more stable notion of distance,
at the price of a less accurate fit of the data.

3. Witnessed k-distance

In this section we describe a simple scheme for approximating the distance to a
uniform measure together with a general error bound. The main contribution of
our work, presented in Section 4, is the analysis of the quality of this approximation
when the input points come from a measure concentrated on a lower-dimensional
subset of the Euclidean space.

3.1. k-Distance as a Power Distance. Given a set of points U = {u1, . . . , un} in
Rd with weights (wu), we call the power distance to U the function powU obtained
as the lower envelope of all the functions d2

u : x 7→ ‖u− x‖2 − wu, where u ranges
over U . By Proposition 3.1 in [6], we can express the square of any distance to a
measure as a power distance with non-positive weights. The following proposition
recalls this property in the case of k-distance; it is equivalent to the well-known
fact that the order-k Voronoi diagrams can be written as the power diagrams for a
certain set of points and weights [3].

Proposition 3.1. For any P ⊆ Rd, denote by Baryk(P ) the set of barycenters of
any subset of k points in P . Then

(3) d2
P,k(x) = min

{
‖x− p̄‖2 − wp̄; p̄ ∈ Baryk(P )

}
,

where the weight of a barycenter p̄ = 1
k

∑
i pi is given by wp̄ := − 1

k

∑
i ‖p̄− pi‖2.

Proof. Given k distinct points p1, . . . , pk in P , denote their barycenter by p̄ and
consider the function d2

p̄(x) := 1
k

∑
1≤i≤k ‖x − pi‖2. An easy computation shows

that
d2
p̄(x) = 1

k

∑
1≤i≤k

‖x− pi‖2 = ‖x− p̄‖2 − wp̄,

where the weight wp̄ = − 1
k

∑
1≤i≤k ‖p̄− pi‖2. The proposition follows from the fact

that d2
P,k can be expressed as the minimum of all the functions d2

p̄. �
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In other words, the square of the k-distance function to P coincides exactly with
the power distance to the set of barycenters Baryk(P ) with the weights defined
above. From this expression, it follows that the sublevel sets of the k-distance dP,k
are finite unions of balls,

d−1
P,k([0, r]) =

⋃
p̄∈Baryk(P )

B(p̄, (r2 + wp̄)1/2).

Therefore, ignoring the complexity issues, it is possible to compute the homotopy
type of this sublevel set by considering the weighted alpha-shape of Baryk(P ) [14],
which is a subcomplex of the regular triangulation of the set of weighted barycenters.

From the proof of Proposition 3.1, we also see that the only barycenters that
actually play a role in Equation (3) are the barycenters of k points of P whose order-
k Voronoi cell is not empty. However, the dependence on the number of non-empty
order-k Voronoi cells makes computation intractable even for moderately sized point
clouds in the Euclidean space [9]. One way to avoid this difficulty is to replace
the k-distance to P by an approximate k-distance, defined as in Equation (3),
but where the minimum is taken over a smaller set of barycenters. Then, the
question is: Given a point set P , can we replace the set of barycenters BarykP in
the definition of k-distance by a small subset B while controlling the approximation
error ‖pow1/2

B −dP,k‖∞?
Replacing the k-distance with another power distance is especially attractive since

many geometric and topological inference methods relying on distance functions
continue to hold when one of the functions is replaced by a good approximation in
the class of power distances. When this is the case, and some sampling conditions
are met, it is possible, for instance, to recover the homotopy type of the underlying
compact set (see the Reconstruction Theorem in [6]).

3.2. Approximating by witnessed k-distance. We consider a subset of the
barycenters suggested by the input data. The answer to our question is affirmative
if we accept a multiplicative error.

Definition 3.2. For every point p in P , the barycenter of p and its (k − 1) nearest
neighbors in P is called a witnessed k-barycenter. Let Barykw(P ) be the set of all
such barycenters. We get one witnessed barycenter for every point of the sampled
point set, and define the witnessed k-distance,

dw
P,k(x) =

(
min{‖x− p̄‖2 − wp̄ | p̄ ∈ Barykw(P )}

)1/2
.

Computing the set of all witnessed barycenters of a point set P requires only
finding the k − 1 nearest neighbors of every point in P . This search problem has
a long history in computational geometry [2, 8, 17], and now has several practical
implementations. Even a brute-force approach with the running time O(dn2), where
n is the number of points in P , is significantly better than the Ω(nbd/2ckdd/2e) lower
bound on the number of cells in order-k Voronoi diagrams [9]. (Note that this lower
bound holds as n/k → ∞, which is not the case in our problem; finding similar
lower bounds when n/k is constant is an open problem.)

General error bound. Because the distance functions we consider are defined by
minima, and Barykw(P ) is a subset of Baryk(P ), the witnessed k-distance is never
less than the exact k-distance. In the lemma below, we give a general multiplicative
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upper bound. This lemma does not assume any special property for the input point
set P . However, even such a coarse bound can be used to estimate Betti numbers
of sublevel sets of dP,k, using arguments similar to those in [7].

Lemma 3.3 (General Bound1). For any finite point set P ⊆ Rd and 0 < k < |P |,
0 ≤ dw

P,k − dP,k ≤ 2 dP ≤ 2 dP,k .

Proof. Let y be a point in Rd, and p̄ the barycenter associated with an order-k
Voronoi cell containing y, i.e., p̄ is such that dP,k(y) = dp̄(y) := (‖x− p̄‖2 − wp̄)1/2.
Let us find a witnessed barycenter q̄ close to p̄. By definition, p̄ is the barycenter of
the k nearest neighbors p1, . . . , pk of y in P . Let x := p1 be the nearest neighbor of
y, and q̄ the barycenter witnessed by the point x. Then, dP (y) = ‖x− y‖ ≤ dP,k(y),
and

dw
P,k(y) ≤ dq̄(y) ≤ dq̄(x) + ‖x− y‖ ≤ dp̄(x) + ‖x− y‖

≤ dp̄(y) + 2‖x− y‖ = dP,k(y) + 2dP (y).
(We have repeatedly used the fact that power distance is a 1-Lipschitz function.)
Since y was chosen arbitrarily, the claim follows. �

4. Approximation Quality

Let us briefly recall our hypotheses. There is an ideal, well-conditioned measure
µ on Rd supported on an unknown compact set K. We also have a noisy version
of µ, i.e., another measure ν with W2(µ, ν) ≤ σ, and we suppose that our data
set P consists of N points independently sampled from ν. In this section we give
conditions under which the witnessed k-distance to P provides a good approximation
of the distance to the underlying set K.

4.1. Dimension of a measure. First, we make precise the main assumption (H)
on the underlying measure µ, which we use to bound the approximation error made
when replacing the exact by the witnessed k-distance. We require µ to be low
dimensional in the following sense.

Definition 4.1. A measure µ on Rd is said to have dimension at most ` with
constant αµ > 0 if the amount of mass contained in the ball B(p, r) is at least αµr`,
for every point p in the support of µ and every radius r smaller than the diameter
of this support. If µ is said to have dimension at most `, this means that there
exists a constant αµ.

The important assumption here is that the lower bound µ(B(p, r)) ≥ αr` should
be true for some positive constant α and for r smaller than a given constant R. The
choice of R = diam(spt(µ)) provides a normalization of the constant αµ and slightly
simplifies the statements of the results.

LetM be an `-dimensional compact submanifold of Rd, and f : M → R a positive
weight function on M with values bounded away from zero and infinity. Then, the
dimension of the volume measure on M weighted by the function f is at most `.
A quantitative statement can be obtained using the Bishop–Günther comparison
theorem; the bound depends on the maximum absolute sectional curvature of the
manifold M , as shown in Proposition 4.9 in [6]. Note that the positive lower bound
on the density is really necessary. For instance, the dimension of the standard

1The authors thank Daniel Chen for strengthening an earlier version of this bound.
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Gaussian distribution G(0, 1) on the real line is not bounded by 1, nor by any
positive constant, because the density of this distribution decreases to zero faster
than any function r 7→ 1/r` as one moves away from the origin.

It is easy to see that if m measures µ1, . . . , µm have dimension at most `, then
so does their sum. Consequently, if (Mj) is a finite family of compact submanifolds
of Rd with dimensions (dj), and µj is the volume measure on Mj weighted by
a function bounded away from zero and infinity, the dimension of the measure
µ =

∑m
j=1 µj is at most maxj dj .

4.2. Bounds. In the remainder of this section, we bound the error between the
witnessed k-distance dw

P,k and the (ordinary) distance dK to the compact set K. We
start from a proposition from [6] that bounds the error between the exact distance
to measure and dK .

Theorem 4.2. Let µ denote a probability measure with dimension at most `,
supported on a compact set K. Consider another measure ν, then for a mass
parameter m0 ∈ (0, 1),

‖dν,m0 − dK‖∞ ≤ m−1/2
0 W2(µ, ν) + α−1/`

µ m
1/`
0 ,

where αµ is the parameter in Definition 4.1.

Proof. Using the triangle inequality and Equation (2), one has

‖dν,m0 − dK‖∞ ≤ ‖dµ,m0 − dν,m0‖∞ + ‖dµ,m0 − dK‖∞
≤ m−1/2

0 W2(µ, ν) + ‖dµ,m0 − dK‖∞

Then, from Lemma 4.7 in [6], ‖dµ,m0−dK‖∞ ≤ α−1/`
µ m

1/`
0 , and the claim follows. �

To make this bound concrete, let us construct a simple example where the term
corresponding to the Wasserstein noise and the term corresponding to the smoothing
have the same order of magnitude.

Example. Consider the restriction µ of the Lebesgue measure to the `-dimensional
unit ball K := B(0, 1), rescaled to become a probability measure by a factor
1/ vol` B(0, 1). For a given mass parameter m0, consider the second measure ν
obtained by moving every bit of mass of µ in the `-ball B(0,m1/`

0 ) to the closest
point in the (`− 1)-sphere S(0,m1/`

0 ); see Figure 1. By construction,

W2(µ, ν)2 =
∫

B(0,m1/`
0 )

(m1/`
0 − ‖x‖)2dµ(x)

= vol` B(0, 1)
vol`−1 S(0, 1)

∫ m
1/`
0

0
r`−1(m1/`

0 − r)2dr

= `

∫ m
1/l
0

0

(
r`+1 − 2r`m1/`

0 + r`−1m
2/`
0

)
dr

= 2m1+2/`
0

(`+ 1)(`+ 2)
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0

m
1/`
0

1

ν

Figure 1. µ is the uniform measure on a ball of radius 1, K =
B(0, 1). ν is supported on the spherical shell with radii m1/`

0 and
1. It is constructed by moving the mass of µ at every point in the
ball B(0,m1/`

0 ) to the closest point in the sphere S(0,m1/`
0 ).

The distance dν,m0(0) of the origin to ν is easy to compute: the radius of the smallest
ball centered at the origin with a mass m0 of ν is exactly m1/`

0 . Hence,

‖dK − dν,m0‖∞ ≥ |dK(0)− dν,m0(0)|

= m
1/`
0 = C`m

−1/2
0 W2(µ, ν).

In other words, the two terms in the bound in Theorem 4.2 differ by a constant
factor. �

In the previous theorem, when ν = 1P is the uniform measure on a point cloud P
and m0 = k/|P |, we get the exact bound on the k-distance.

Corollary 4.3 (Exact Bound). Let µ denote a probability measure with dimension
at most `, supported on a compact set K. Consider the uniform measure 1P on a
point cloud P , and set m0 = k/|P |. Then

‖dP,k − dK‖∞ ≤ m−1/2
0 W2(µ,1P ) + α−1/`

µ m
1/`
0 ,

where αµ is the parameter in Definition 4.1.

In the main theorem of this section, the exact k-distance in Corollary 4.3 is
replaced by the witnessed k-distance. Observe that the new error term is only a
constant factor off from the old one.

Theorem 4.4 (Witnessed Bound). Let µ be a probability measure satisfying the
dimension assumption and let K be its support. Consider the uniform measure 1P
on a point cloud P , and set m0 = k/|P |. Then,

‖dw
P,k − dK‖∞ ≤ 3m−1/2

0 W2(µ,1P ) + 12α−1/`
µ m

1/`
0 ,

where αµ is the parameter in Definition 4.1.

Before proving the theorem, we start with an auxiliary lemma showing that
a measure ν close to a measure µ satisfying an upper dimension bound (as in
Definition 4.1) remains concentrated around the support of µ.
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Lemma 4.5 (Concentration). Let µ be a probability measure satisfying the di-
mension assumption, and let ν be another probability measure. Let m0 be a mass
parameter. Then, for every point p in the support of µ, ν(B(p, η)) ≥ m0, where
η = m

−1/2
0 W2(µ, ν) + 4α−1/`

µ m
1/2+1/`
0 .

Proof. Let π be an optimal transport plan between ν and µ. For a fixed point p in
the support K of µ, let r be the smallest radius such that B(p, r) contains at least
2m0 of mass µ. Consider now a submeasure µ′ of µ of mass exactly 2m0 and whose
support is contained in the ball B(p, r). This measure is obtained by transporting a
submeasure ν′ of ν by the optimal transport plan π. Our goal is to determine for
what choice of η the ball B(p, η) contains a ν′-mass (and, therefore, a ν-mass) of at
least m0. We make use of Chebyshev’s inequality for ν′ to bound the mass of ν′
outside of the ball B(p, η):

(4)
ν′(Rd \ B(p, η)) = ν′({x ∈ Rd; ‖x− p‖ ≥ η})

≤ 1
η2

∫
‖x− p‖2dν′.

Observe that the right-hand term of this inequality is exactly the squared Wasserstein
distance between ν′ and the Dirac mass 2m0δp divided by η2. We bound this squared
Wasserstein distance using the triangle inequality:

(5)

∫
‖x− p‖2dν′ = W2

2(ν′, 2m0δp)

≤ (W2(µ′, ν′) + W2(µ′, 2m0δp))2

≤ (W2(µ, ν) + 2m0r)2.

Combining equations (4) and (5), we get

ν(B(p, η)) ≥ ν′(B(p, η)) ≥ ν′(Rd)− ν′(Rd \ B(p, η))

≥ 2m0 −
(W2(µ, ν) + 2m0r)2

η2 .

By the lower bound on the dimension of µ, and the definition of the radius r, one
has r ≤ (2m0/αµ)1/`. Hence, the ball B(p, η) contains a mass of at least m0 as soon
as

(W2(µ, ν) + α
−1/`
µ 21+1/`m

1+1/`
0 )2

η2 ≤ m0.

This will be true, in particular, if η is larger than

W2(µ, ν)m−1/2
0 + 4α−1/`

µ m
1/2+1/`
0 . �

Proof of the Witnessed Bound Theorem. Since the witnessed k-distance is a mini-
mum over fewer barycenters, it is larger than the real k-distance. Using this fact
and the Exact Bound Theorem one gets the lower bound:

dw
P,k ≥ dP,k ≥ dK −

(
m
−1/2
0 W2(µ,1P ) + α−1/`

µ m
1/`
0

)
.

For the upper bound, choose η as given by the previous Lemma 4.5 applied to
the measure ν = 1P . Then, for every point y in K, the ball B(y, η) contains at least
k points in the point cloud P . Let p1 be one of these points, and p2, . . . , pk be the
(k − 1) nearest neighbors of p1 in P . The points p2, . . . , pk cannot be at a distance
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greater than 2η from p1, and, consequently, cannot be at a distance greater than 3η
from y. By definition, the barycenter p̄ of the points {pi} is witnessed by p1. Hence,

dw
P,k(y) ≤ dp̄(y) :=

(
1
k

k∑
i=1
‖y − pi‖2

)1/2

≤ 3η.

Since dw
P,k is 1-Lipschitz, we get dw

P,k(x) ≤ 3η + ‖y − x‖. This inequality is true for
every point y in K; minimizing over all such y, we obtain dw

P,k(x) ≤ 3η + dK(x).
Recall that m0 ≤ 1, as is m1/2

0 . To match the form of the bound in Corollary 4.3,
we drop m1/2

0 from the second term of η in the Concentration Lemma. Substituting
the result into the last inequality, we complete the proof. �

5. Convergence under Empirical Sampling

One term remains moot in the bounds in Corollary 4.3 and Theorem 4.4, namely
the Wasserstein distance W2(µ,1P ). In this section, we analyze its convergence.
The rate depends on the complexity of the measure µ, defined below. The moral of
this section is that if a measure can be well approximated with few points, then it
is also well approximated by random sampling.

Definition 5.1. The complexity of a probability measure µ at a scale ε > 0 is
the minimum cardinality of a finitely supported probability measure ν that ε-
approximates µ in the Wasserstein sense, i.e., such that W2(µ, ν) ≤ ε. We denote
this number by Nµ(ε).

Observe that this notion is very close to the ε-covering number of a compact
set K, denoted by NK(ε), which counts the minimum number of balls of radius
ε needed to cover K. It is worth noting that if measures µ and ν are close — as
are the measure µ and its noisy approximation ν in the previous section — and µ
has low complexity, then so does the measure ν. The following lemma shows that
measures satisfying the dimension assumption have low complexity. Its proof follows
from a classical covering argument that appears, for example, in Proposition 4.1 of
[18].

Lemma 5.2 (Dimension–Complexity). Let K be the support of a measure µ of
dimension at most ` with constant αµ (as in Definition 4.1). Then, for every
positive ε, Nµ(ε) ≤ 5`/(αµε`).

Combining this lemma with the theorem below, we get a bound on how well a
measure satisfying an upper bound on its dimension is approximated by empirical
sampling.

Theorem 5.3 (Convergence). Let µ be a probability measure on Rd whose support
has diameter at most D, and let P be a set of N points independently drawn from
the measure µ. Then, for ε > 0,

P(W2(1P , µ) ≤ 2ε) ≥ 1− (2Nµ(ε) + 1) exp
(
− 2Nε4

D4Nµ(ε)2

)
.

The proof of this theorem relies mainly on the following versions of Hoeffding’s
inequality. Given a sequence (Xi)i≥0 of independent real-valued random variables
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with common mean x and such that 0 ≤ Xi ≤ m, one has:

P
(∣∣∣∣ 1
N

(X1 + . . .+XN )− x
∣∣∣∣ ≥ t) ≤ 2 exp(−2t2N/m2),(6)

P
(

1
N

(X1 + . . .+XN )− x ≥ t
)
≤ exp(−2t2N/m2).(7)

Proof. Let n be a fixed integer, and let ε be the minimum Wasserstein distance
between µ and a measure µ̄ supported on (at most) n points. Let S be the support
of the optimal measure µ̄, so that µ̄ can be decomposed as

∑
s∈S αsδs (αs ≥ 0).

Let π be an optimal transport plan between µ and µ̄; this is equivalent to finding
a decomposition of µ as a sum of n non-negative measures (πs)s∈S such that
mass(πs) = αs, and ∑

s∈S

∫
‖x− s‖2dπs(x) = ε2 = W2(µ, µ̄)2.

Drawing a random point X from the measure µ amounts to (i) choosing a random
point s in the set S (with probability αs) and (ii) drawing a random pointX following
the probability distribution πs/αs. Given N independent points X1, . . . , XN drawn
from the measure µ, denote by Is,N the proportion of the (Xi) for which the point
s was selected in step (i). Hoeffding’s inequality (6) allows us to bound how far
the proportion Is,N deviates from αs: P(|Is,N − αs| ≥ δ) ≤ 2 exp(−2Nδ2). If the
sum of deviations for all points s exceeds δ, then at least one deviation exceeds δ/n;
combining the inequalities and using the union bound yields

P

(∑
s∈S
|Is,N − αs| ≥ δ

)
≤ 2n exp(−2N(δ/n)2).

For every point s, denote by π̃s the distribution of the distances to s in the
submeasure πs, i.e., the measure on the real line defined by π̃s(I) := πs({x ∈
Rd; ‖x− s‖ ∈ I}) for every interval I. Define µ̃ as the sum of the π̃s; by the change
of variable formula one has∫

R
t2dµ̃(t) =

∑
s

∫
R
t2dπ̃s =

∑
s

∫
Rd

‖x− s‖2dπs = ε2.

Given a random point Xi sampled from µ, denote by Yi the Euclidean distance
between the point Xi and the point s chosen in step (i). By construction, the
distribution of Yi is given by the measure µ̃; applying Hoeffding’s inequality (7) to
the sequence Y 2

i yields

P

(
1
N

N∑
i=1

Y 2
i − ε2 ≥ η2

)
≤ exp(−2Nη4/D4).

In order to conclude, we need to define a transport plan from the empirical
measure 1P = 1

N

∑N
i=1 δXi

to the finite measure µ̄. To achieve this, we order the
points (Xi) by increasing distance Yi; then transport every Dirac mass 1

N δXi to
the corresponding point s in S until s is “full”, i.e., the mass αs is reached. The
squared cost of this transport operation is at most 1

N

∑N
i=1 Y

2
i . Then, distribute

the remaining mass among the s points in any way; the squared cost of this step
is at most D2∑

s∈S |Is,N − αs|. The total squared cost of this transport plan is
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the sum of these two costs. From what we have shown above, setting η = ε and
δ = ε2/D2, one gets

P(W2(1P , µ) ≤ 2ε) ≥ P(W2
2(1P , µ) ≤ 3ε2)

≥ 1− 2n exp
(
−2Nε4

D4n2

)
− exp

(
−2Nε4

D4

)
≥ 1− (2n+ 1) exp

(
−2Nε4

D4n2

)
,

where the last inequality follows since n ≥ 1.
�

Sampling from a perturbation of the measure. A result similar to the Con-
vergence Theorem follows when the samples are drawn not from the original measure
µ, but from a “noisy” approximation ν. When the measure ν is also supported on a
compact set, this follows directly from the Convergence Theorem.

Corollary 5.4 (Fixed Diameter Sampling). Let µ and ν be two probability measures
on Rd whose support has diameter at most D and such that W2(µ, ν) ≤ σ. Let P
be a set of N points independently drawn from the measure ν. Then,

P(W2(1P , µ) ≤ 5σ) ≥ 1− (2Nµ(σ) + 1) exp
(
− 32Nσ4

D4Nµ(σ)2

)
.

Proof. First of all, observe that, by definition, the covering number Nν(σ + δ) is
upper bounded by Nµ(δ). We apply the previous theorem to the measure ν with
ε = (σ + δ) to get

P(W2(1P , ν) ≤ 2(σ + δ)) ≥ 1− (2Nν(σ + δ) + 1) exp
(
− 2N(σ + δ)4

D4Nν(σ + δ)2

)
≥ 1− (2Nµ(δ) + 1) exp

(
− 32Nσ4

D4Nµ(δ)2

)
.

Setting δ = σ, and applying the triangle inequality W2(1P , µ) ≤ W2(1P , ν) +
W2(ν, µ) concludes the proof. �

Perturbations with non-compact support. In many cases the perturbed mea-
sure ν is not compactly supported, and the previous corollary does not apply. It is
still possible to recover similar results under a stronger assumption than a simple
bound on the Wasserstein distance between µ and ν.

To give a flavor of such a result, we consider the simple case where ν is a
convolution of µ with an isotropic centered Gaussian distribution with variance σ2,
that is: ν = µ ∗ G(0, (σ2/d)I). We will make use of the following bound on the sum
of squared norms of random Gaussian vectors.

Lemma 5.5. Let G1, . . . , GN be i.i.d. isotropic Gaussian vectors with zero mean
and covariance matrix (σ2/d)I. Then,

P

( 1
N

N∑
i=1
‖Gi‖2

)1/2

≥ (1 + ε)σ

 ≤ exp
(
−1

2ε
2Nd

)
.
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Proof. By hypothesis, the vectors (Gi) can be written as Gi = (αYi,1, . . . , αYi,d)
where (Yi,j) are N×d independent centered Gaussian random variables with variance
1, and α = σ/

√
d. Define a random variable Z by

Z = 1
N

N∑
i=1

d∑
j=1

α2(Y 2
i,j − 1).

Using Lemma 1 from [19], we can bound the tail of Z:

P
(
Z ≥ 2

√
xσ2
√
Nd

+ 2xσ
2

Nd

)
≤ exp(−x).

Setting x = 1
2ε

2Nd yields:

P

(
1
N

N∑
i=1
‖Gi‖2 ≥ (1 + ε)2σ2

)
= P

(
Z ≥ 2εσ2 + ε2σ2)

≤ P
(
Z ≥

√
2εσ2 + ε2σ2

)
≤ exp

(
−1

2ε
2Nd

)
. �

Corollary 5.6 (Gaussian Convolution Sampling). Let µ be a probability measure
whose support has diameter at most D and ν be obtained by convolution of µ,
ν = µ ∗ G(0, (σ2/d)I). Let Q be a set of N points drawn independently from the
measure ν. Then,

P(W2(1Q, µ) ≤ 4σ) ≥ 1− exp(−Nd/2)− (2Nµ(σ) + 1) exp
(
− 2Nσ4

D4Nµ(σ)2

)
.

Proof. Let X be a random vector with distribution µ and G a random vector
with distribution G(0, (σ2/d)I). Then, by definition of the convolution, the vector
Y = X +G has distribution ν. We consider N independent copies of such vectors
(Xi, Gi)i, and set Yi = Xi +Gi. The main difficulty is to bound the probability that
the Wasserstein distance between the uniform probability measures on the point
sets P = {X1, . . . , XN} and Q = {Y1, . . . , YN} exceeds (1 + ε)σ. The following
inequality is an immediate consequence of the previous lemma:

P(W2(1P ,1Q) ≥ (1 + ε)σ) ≤ exp
(
−1

2ε
2Nd

)
.

We set ε = 1 in this inequality and apply Theorem 5.3 and the triangle inequality
to get:

P(W2(1Q, µ) ≤ 4σ) ≥ P(W2(1P ,1Q) < 2σ) · P(W2(1P , µ) ≤ 2σ)

≥ 1− exp(−Nd/2)− (2Nµ(σ) + 1) exp
(
− 2Nσ4

D4Nµ(σ)2

)
. �

Remark. We note that the result of Corollary 5.6 can be extended to more general
models of noise. The crucial point is to be able to control the Wasserstein distance
between 1P and 1Q, where P and Q are point sets obtained by sampling N points
from µ and ν. Estimates of this kind can be obtained, for instance, if there exist
random variables X and Y with distributions µ and ν such that the random variable
Z = ‖X−Y ‖2 is sub-exponential, i.e., P(Z ≥ t) ≤ exp(−ct). We refer the interested
reader, for example, to Proposition 5.16 in [23].
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(a) Data

(b) Sublevel sets

Figure 2. (a) 6000 points sampled from a sideways figure 8 (dis-
played on top of the point set), with circle radii R1 =

√
2 and

R2 =
√

9/8. The points are sampled from the uniform measure
on the figure-8, convolved with the Gaussian distribution G(0, σ2),
where σ = .45. (b) r-sublevel sets of the witnessed (in gray) and
exact (additional points in black) k-distances with mass parameter
m0 = 50/6000, and r = .24.

6. Discussion

We illustrate the utility of the Witnessed Bound Theorem with an example and
an inference statement. Figure 2(a) shows 6000 points drawn from the uniform
distribution on a sideways figure-8, convolved with a Gaussian distribution. The
ordinary distance function has no hope of recovering geometric information out of
these points since both loops of the figure-8 are filled in. In Figure 2(b), we show
the sublevel sets of the distance to the uniform measure on the point set, both the
witnessed k-distance and the exact k-distance. Both functions recover the topology
of figure-8; the bits missing from the witnessed k-distance smooth out the boundary
of the sublevel set, but do not affect the image at large.
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Complexes. Since we are working with the power distance to a weighted point
set (the witnessed barycenters U), we can employ different simplicial complexes
commonly used in the computational geometry literature [16]. Recall that an
(abstract) simplex is a subset of some universal set, in our case the witnessed
barycenters U ; a simplicial complex is a collection of simplices, where each subset
of every simplex belongs to the collection.

The simplest construction is the Čech complex [16, Section III.2]. It contains a
simplex if the balls defined by the points at the power distance r from the witnessed
barycenters intersect:

Čr(U) =
{
σ ⊆ U |

⋂
u∈σ

B(u, (r2 + wu)1/2) 6= ∅
}
.

A closely related geometric construction, the weighted alpha complex, is defined by
clipping these balls using the power diagram of the witnessed barycenters, see [14].
By the Nerve Theorem [16], both the Čech complex Čr(U) and the alpha complex are
homotopy equivalent to the sublevel sets of the power distance to U , pow−1

U (−∞, r].
In many applications, points are given only through their pairwise distances,

rather than explicit coordinates. For this reason and because of its computational
simplicity, the Vietoris–Rips complex is a popular choice. This complex is defined
as the flag (or clique) complex of the 1-skeleton of the Čech complex. Simply put, a
simplex σ belongs to the Vietoris–Rips complex iff all its edges belong to the Čech
complex, i.e.,

VRr(U) =
{
σ ⊆ U | {u, v} ∈ Čr(U) for all u, v ∈ σ

}
.

In the case of the witnessed k-distance, the pairwise distances between the input
points suffice for the construction of the Vietoris–Rips complex on the witnessed
barycenters; we give the details in Appendix A.

Note that the Vietoris–Rips complex VRr(U) does not, in general, have the
homotopy type of pow−1

U (−∞, r]. It is, however, possible to prove inference results
for homology given an interleaving property, i.e., there exists a constant α ≥ 1 such
that Čr(U) ⊆ VRr(U) ⊆ Čαr(U). The inclusion Čr(U) ⊆ VRr(U) always holds,
simply by definition. However, the second inclusion does not necessarily hold if the
weights are positive, as the following example demonstrates.

Example. Consider the weighted point set U made of the three vertices (u, v, w)
of an equilateral triangle with unit side length and weights wu = wv = ww = 1/4.
Then, for any non-negative r, the Vietoris–Rips complex VRr(U) contains the
triangle, while the Čech complex Čr(U) contains this triangle only as soon as
(r2 + 1/4)1/2 ≥ 1/

√
3, i.e., r ≥ 1/

√
12. In this case, there is no α such that the

inclusion VRr(U) ⊆ Čαr(U) holds for every positive r.

On the other hand, the following lemma shows that when the weights (wu)u∈U
are non-positive, the inclusion VRr(U) ⊆ Č2r(U) always holds. This property lets
us extend the usual homology inference results from Vietoris–Rips complexes to the
(weighted) Vietoris–Rips complexes associated with the witnessed k-distance.

Lemma 6.1. If U is a point cloud with non-positive weights, VRr(U) ⊆ Č2r(U).

Proof. Let u, v be two weighted points such that the balls B(u, (r2 + wu)1/2) and
B(v, (r2 + wv)1/2) intersect. Let ` denote the Euclidean distance between u and v.
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By hypothesis, we know that one of the two radii is at least `/2. Suppose wu > wv;
in this case, (r2 + wu)1/2 ≥ `/2. Since the weights are non-positive, we also know
that r ≥ `/2. Using these two facts, we deduce

(2r)2 + wu = 3r2 + (r2 + wu) ≥ 3`2/4 + `2/4 = `2.

This means that the point v belongs to the ball B(u, ((2r)2 + wu)1/2).
Now, choose a simplex σ in the Vietoris–Rips complex VRr(U). Let v be its

vertex with the smallest weight. By the previous paragraph, we know that v belongs
to every ball B(u, (2r)1/2 +wu), for every u ∈ σ. Therefore, all these balls intersect,
and, by definition, σ belongs to the Čech complex Č2r(U). �

Inference. Suppose we are in the conditions of the hypothesis (H). Additionally,
we assume that the support K of the original measure µ has a weak feature size
larger than R. This means that the distance function dK has no critical value in the
interval (0, R). A consequence of this hypothesis is that all the offsets Kr = d−1

K [0, r]
of K are homotopy equivalent for r ∈ (0, R). Suppose again that we have drawn a
set P of N points from a nearby measure µ. The following theorem combines the
results of Sections 4 and 5.

Theorem 6.2 (Approximation). Suppose that µ is a measure satisfying hypothesis
(H), supported on a compact set K of diameter at most D, and ν is another measure
with W2(µ, ν) ≤ σ. Let P be a set of N points independently sampled from ν.

(D) If the diameter of the support of ν does not exceed D, then

‖dw
P,k − dK‖∞ ≤ 15m−1/2

0 σ + 12m1/`
0 α−1/`

µ

with probability at least

1− (2Nµ(σ) + 1) exp
(
− 32Nσ4

D4Nµ(σ)2

)
.

(G) If ν is a convolution of µ with a Gaussian, ν = µ ∗ G(0, (σ2/d)I), then

‖dw
P,k − dK‖∞ ≤ 12m−1/2

0 σ + 12m1/`
0 α−1/`

µ

with probability at least

1− exp(−Nd/2)− (2Nµ(σ) + 1) exp
(
− 2Nσ4

D4Nµ(σ)2

)
.

In both statements, Nµ(σ) is the complexity of measure µ, as in Definition 5.1, and
αµ is the parameter in Definition 4.1.

The standard argument [10] shows that the Betti numbers of the compact set K
can be inferred from the function dw

P,k, which is defined only from the point sample P ,
as long as e = 3m−1/2

0 W2(µ,1P ) + 12m1/`
0 α

−1/`
µ is less than R/4. Indeed, denoting

by Kr and Ur the r-sublevel sets of the functions dK and dw
P,k, the sequence of

inclusions
K0 ⊆ Ue ⊆ K2e ⊆ U3e ⊆ K4e

holds with high probability. By assumption, the function dK has no critical values
in the range (0, 4e) ⊆ (0, R). Therefore, the rank of the image on the homology
induced by inclusion H(Ue)→ H(U3e) is equal to the Betti numbers of the set K.
In the language of persistent homology [15], the persistent Betti numbers β(e,3e) of
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Figure 3. (PL-approximation of the) 1-dimensional persistence
vineyard of the witnessed k-distance function. Topological features
of the space, obscured by noise for low values of m0, stand out as
we increase the mass parameter.

the function dw
P,k are equal to the Betti numbers of the set K. Computationally, we

can construct the sublevel sets Ue as either the Čech complex or the alpha shape.
Using the interleaving of Vietoris–Rips and Čech complexes, proved in Lemma 6.1,

we can recover the Betti numbers from the Vietoris–Rips complex if e < R/9 [7].
From the following diagram of inclusions and homotopy equivalences

Če ⊆ VRe ⊆ Č2e ⊆ Č4e ⊆ VR4e ⊆ Č8e' ' ' '

K0 ⊆ Ue ⊆ U2e ⊆ K3e ⊆ U4e ⊆ U8e ⊆ K9e,

it follows that the map on homology H(VRe(U))→ H(VR4e(U)) has the same rank
as the homology of the space K.

Choice of the mass parameter. The language of persistent homology also
suggests a strategy for choosing a mass parameterm0 for the distance to a measure —
a question not addressed by the original paper [6]. For every mass parameter m0, the
p-dimensional persistence diagram Persp(dµ,m0) is a set of points {(bi(m0), di(m0))}i
in the extended plane (R∪ {∞})2. Each of these points represents a homology class
of dimension p in the sublevel sets of dµ,m0 ; bi(m0) and di(m0) are the values at
which it is born and dies. The distance to measure d1P ,m0 depends continuously on
m0 and, by the Stability Theorem [10], so do its persistence diagrams. Thus, one
can use the vineyards algorithm [11] to track their evolution. Figure 3 illustrates
such a construction for the point set in Figure 2 and the witnessed k-distance.
It displays the evolution of the persistence (d1(m0) − b1(m0)) of each of the 1-
dimensional homology classes as m0 varies. This graph highlights the choices of the
mass parameter that expose the two prominent classes (corresponding to the two
loops of the figure-8).
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Appendix A. Pairwise Distances

A valuable property of the Vietoris–Rips complex is that the pairwise distances
between the points suffice for its construction. We (re-)construct this property for
the Vietoris–Rips complex on the witnessed barycenters. To do so, we need the
weights of the barycenters as well as their pairwise distances in terms of the pairwise
distances between the points of P .

Intersection criteria. Suppose we are given two weighted barycenters p̄ =
(1/k)

∑k
i=1 pi and q̄ = (1/k)

∑k
i=1 qi. We start by finding the intersection point

between the line (p̄q̄) and the bisector of the power cells of p̄ and q̄. The point
xt = (1− t)p̄+ tq̄ belongs to this bisector if and only if:
‖xt − p̄‖2 − wp̄ = ‖xt − q̄‖2 − wq̄ ⇐⇒ t2‖p̄− q̄‖2 − wp̄ = (1− t)2‖p̄− q̄‖2 − wq̄

⇐⇒ 2t = 1 + wp̄ − wq̄
‖p̄− q̄‖2

.

The two balls B(p̄, (r2 + wp̄)1/2) and B(q̄, (r2 + wq̄)1/2) intersect if and only if the
point xt belongs to one of them, in which case it also belongs to the other. With
the value of t that we found, this is equivalent to

‖xt − p̄‖2 ≤ r2 + wp̄ ⇐⇒ t2‖p̄− q̄‖2 − wp̄ ≤ r2

⇐⇒ 1
4

(
1 + wp̄ − wq̄
‖p̄− q̄‖2

)2
‖p̄− q̄‖2 − wp̄ ≤ r2.

Consequently, one can determine whether a segment {p̄, q̄} belongs to the Vietoris–
Rips complex of the witnessed barycenters with parameter r by knowing only the
weights of the barycenters and their pairwise distances. In the next two paragraphs,
we show how to express these quantities in terms of the pairwise distances between
the data points.

Vertex weights. For a barycenter p̄ = 1
k (p1 + . . .+ pk) of k distinct points of P ,

−wp̄ = 1
k

k∑
i=1
‖p̄− pi‖2 = 1

k

k∑
i=1

∥∥1
k

k∑
j=1

pj − pi
∥∥2 = 1

k

k∑
i=1

∥∥1
k

k∑
j=1

(pj − pi)
∥∥2

= 1
k3

k∑
i=1

k∑
j=1

k∑
l=1
〈pj − pi|pl − pi〉

= 1
2k3

k∑
i=1

k∑
j>i

k∑
l>j

(‖pi − pj‖2 + ‖pi − pl‖2 + ‖pj − pj‖2)

= k − 2
2k3

k∑
i=1

k∑
j>i

‖pi − pj‖2.

The second to last equality is obtained by considering every triangle 4(pi, pj , pl)
and observing that

0 = (pi − pj + pj − pl + pl − pi)2

= ‖pi − pj‖2 + ‖pj − pl‖2 + ‖pl − pi‖2

+2〈pi − pj |pj − pl〉+ 2〈pi − pj |pl − pi〉+ 2〈pj − pl|pl − pi〉,
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and the last equality comes from observing that each edge appears in (k−2) triangles.

Barycenter distances. It remains to express the distance ‖p̄− q̄‖2 between the
barycenters in terms of the pairwise distances between the points {p1, . . . , pk, q1, . . . , qk}.∥∥p̄−q̄∥∥2 =

∥∥1
k

(∑
qi −

∑
pi

)∥∥2 = 1
k2

∥∥∑(qi−pi)
∥∥2 = 1

k2

k∑
i=1

k∑
j=1
〈(qi−pi)|(qj−pj)〉.

Rewriting
〈(qi−pi)|(qj−pj)〉 = 〈(qi−pi)|(qj−pi+pi−pj)〉 = 〈(qi−pi)|(qj−pi)〉−〈(qi−pi)|(pj−pi)〉
we get dot products between vectors with the same base point, which we express in
terms of the areas of their respective triangles:
〈(qi − pi)|(pj − pi)〉2 = ‖qi − pi‖2‖pj − pi‖2 cos2 θ = ‖qi − pi‖2‖pj − pi‖2 − 4S2,

where S is the area of the triangle 4(pi, qi, pj). We compute it from the pair-
wise distances using Heron’s formula, S2 = s(s − a)(s − b)(s − c), where s is the
semiperimeter, and a, b, c are the lengths of the sides of the triangle.
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