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Given a sequence of N simplices, we consider the sequence of sets Ki consisting of the first
i simplices, for 1 ≤ i ≤ N . We call the sequence of Ki a filtration if all the Ki are simplicial
complexes. In this note, we describe a filtration of a simplicial complex of N simplices on which
the algorithm Pair-Simplices of Edelsbrunner, Letscher and Zomorodian [1] performs Ω(N3)
operations. The existence of this filtration should be contrasted to the experimentally observed
only slightly super-linear running time for filtrations that arise from applications.

We describe the space as well as the ordering on the simplices. Let n = b(N + 29)/7c, v =
b(n−1)/2c, and note that both n and v are in Ω(N). In our filtration, all vertices appear before all
edges in the filtration, and all edges appear before all triangles. The indices that we assign to the
simplices will be within their respective classes (e.g., edge labeled n will appear before the triangle
labeled 1). Some edges will receive a negative index, which is done for simplicity to indicate that
they appear before the edges with positive labels (see Figure 2).

Figure 1 illustrates the construction of our space as well as the assignment of indices to the
simplices. Starting with triangle ABC, we add v vertices inside the triangle in the following manner:
we place the first vertex V1 near the middle of edge AB, the second vertex V2 near the middle of
AV1, V3 near the middle of BV2, V4 near AV2, V5 near BV3, V6 near V1V2, V7 near V1V3, and so
on, moving from both ends inwards at each stage. The edges joining C with the Vi are the first to
appear in the filtration, each one merging the component containing C with Vi. These edges are
not important in our argument, so we do not label them. Edge AB get index 1, and the remaining
edges are assigned indices from the ends inwards similar to the vertices: AV1 gets n, BV1 gets n−1,
AV2 gets n−2, BV3 gets n−3, V1V2 gets n−4, V1V3 gets n−5, and so on (see Figure 1). Similarly,
the triangles are assigned indices from the ends inwards in stages: ABV1 gets 1, AV1V2 gets 2,
BV1V3 gets 3, AV2V4 gets 4, BV3V5 gets 5, and so on. We call these triangles the base triangles.

In addition, we place n− 1 vertices above the plane of triangle ABC, one above each edge AVi,
BVj , and ViVj , and join them to the vertices of those edges (Figure 1 depicts only two of the n− 1
such vertices). One of the edges joining the vertex above the edge k to its endpoints will merge
the component containing the endpoint of the edge k with the vertex above the plane. We do not
label this edge. The other edge gets index k − (n + 1) which is negative. The triangle formed gets
an index larger than v, so that the triangles not in the plane of ABC appear last in the filtration.
We call them fin triangles.

Consider what happens when algorithm Pair-Simplices processes the described filtration.
There are two interesting parts to its execution. First, the base triangles 1 to v are processed, the
edges n to n− v build up lists of Ω(n) simplices each (see Figure 3). Second, when the fin triangles
v +1 to v +n are processed, the search for the corresponding edges goes through all the lists stored
at these edges, merging lists of length Ω(n). As a result, for Ω(n) triangles we perform Ω(n) merges
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Figure 1: The underlying space of the fil-
tration. The edge indices are blue and the
triangle indices are red. Each edge with la-
bel larger than 1 has a triangle coming out
of the plane of the triangle ABC — only tri-
angles above edges labeled n and n − 1 are
shown.
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Figure 2: Simplex ordering
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Figure 3: Processing the filtration: pairing
of edges 1 through n with the base triangles.
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Figure 4: Processing the filtration: interme-
diate lists during the search for the pairing
of the fin triangle above edge n.
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each of which takes time Ω(n). It follows that the total running time is Ω(N3).
To see how this happens, let us consider what happens when we process the triangles one by one

(see Figure 3). First, the base triangles are processed. Triangle 1 is paired with edge n, depositing
its list of boundary edges (n, n − 1, 1) with edge n. Triangle 2 with boundary edges (n, n − 2,
n− 4) causes a collision at edge n, the two lists merge and the result (n− 1, n− 2, n− 4, 1) gets
deposited with edge n− 1. Triangle 3 with boundary edges (n− 1, n− 3, n− 5) causes a collision
at edge n− 1, the lists merge and the result (n− 2, n− 3, n− 4, n− 5, 1) is deposited with edge
n−2. Triangle 4 with boundary edges (n−2, n−6, n−8) causes a collision at edge n−2, the lists
merge and the result (n− 3, n− 4, n− 5, n− 6, n− 8, 1) is deposited with edge n− 3. Continuing
to the last fin triangle builds up lists stored with edges 1 to n and Ω(n) of those lists have length
Ω(n).

Second, the fin triangles are processed. The triangle above edge n has the labeled edges n and
−1 in its boundary. It eventually gets paired with edge −1, but before that happens, the search
goes through each one of the edges n through 1. To see this, note that the boundary edges cause
a collision at edge n, the lists are merged to get (n − 1, 1, −1), the new list causes a collision at
edge n− 1, and after merging we get (n− 2, n− 4, −1). The next collision is at edge n− 2, after
merging the list becomes (n− 3, n− 5, 1, −1), the collision at edge n− 3 produces the list (n− 4,
n− 6, n− 8, −1), the collision at n− 4 gives (n− 5, n− 7, n− 9, 1, −1), and so on; see Figure 4.
This process is repeated for each fin triangle: a similar merge pattern occurs, the only difference
being that it starts at the base edge of the processed fin triangle.

Observe that some edges get cancelled when the lists are merged, but get reintroduced two
merges later. The length of each intermediate list grows by one every two merges, and its length
reaches Ω(n). This implies that the running time of the algorithm is cubic as claimed earlier: for
each one of the Ω(n) fin triangles, Ω(n) lists of length Ω(n) are merged, therefore, the running time
is Ω(N3).
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