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from dionysus import *

from dionysus.viewer import *

from readers import *
Code snippets available at:

http://hg.mrzv.org/Dionysus-tutorial



Dionysus
• C++ library

• Implements various algorithms that I’ve found interesting over the years:

– ordinary persistence

– vineyards

– image persistence

– zigzag persistence

– persistent cohomology

– circular coordinates

– alpha shapes

– Vietoris-Rips complexes

– bottleneck and wasserstein distances between diagrams

• To make life easier, added Python bindings

• This talk exclusively in Python



Python
• Good news: You already know Python! It’s just like pseudo-code in

your papers, but cleaner. ;-)

• Lists and list comprehensions
lst1 = [1,3,5,7,9,11,13]

lst2 = [i for i in lst1 if i < 9]

print lst2 # [1,3,5,7]

• Functions
def pow(x):

def f(y):

return y**x

return f

• Loops and conditionals
for i in lst1:

if i % 3 == 0 and i > 5:

print square(i)

• Lots of extra functionality in modules
from math import sqrt

from dionysus import *
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• Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?
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Persistent Homology

• Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

• “Squint our eyes” no natural fixed scale → persistent homology
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“Eye Squinting”

Pr = ∪p∈P Br(p)P – point set in Rn

0→ H(Pr1)→ H(Pr2)→ . . .→ H(Rn)

10 points

Dgm1

Birth

D
ea
th

Squinting our eyes gives us a
continuous function. Algorithms
work with (discrete) simplicial
complexes.



Simplices and Complexes
0

12

(Geometric) k-simplex: convex hull of (k + 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

s = Simplex([0,1,2])

print "Dimension:", s.dimension

print "Vertices:"

for v in s.vertices:

print v

print "Boundary:"

for sb in s.boundary:

print sb

Boundary: ∂[v0, . . . , vk] =
∑
i(−1)i[v0, . . . , v̂i, . . . , vk]

Dimension: 2

Vertices:

0

1

2

Boundary:

<1, 2>

<0, 2>

<0, 1>



Simplices and Complexes
0

12

(Geometric) k-simplex: convex hull of (k + 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

0

1

2

3

4

not a simplicial
complex:

Boundary: ∂[v0, . . . , vk] =
∑
i(−1)i[v0, . . . , v̂i, . . . , vk]

Simplicial complex: collection of simplices closed under
face relation.



Simplices and Complexes
0

12

(Geometric) k-simplex: convex hull of (k + 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

0

1

2

3

4

not a simplicial
complex:

complex = [Simplex(vertices) for vertices in

[[0], [1], [2], [3], [4], [5],

[0,1], [0,2], [1,2], [0,1,2],

[1,3], [2,4], [3,4]]]

Boundary: ∂[v0, . . . , vk] =
∑
i(−1)i[v0, . . . , v̂i, . . . , vk]

Simplicial complex: collection of simplices closed under
face relation.



Simplices and Complexes
0

12

(Geometric) k-simplex: convex hull of (k + 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

0

1

2

3

4

not a simplicial
complex:

complex = [Simplex(vertices) for vertices in

[[0], [1], [2], [3], [4], [5],

[0,1], [0,2], [1,2], [0,1,2],

[1,3], [2,4], [3,4]]]

simplex9 = Simplex([0,1,2,3,4,5,6,7,8,9])

sphere8 = closure([simplex9], 8)

print len(sphere8)

1022

Boundary: ∂[v0, . . . , vk] =
∑
i(−1)i[v0, . . . , v̂i, . . . , vk]

Simplicial complex: collection of simplices closed under
face relation.



Homology

k-chain = formal sum of k-simplices

k-cycle = chain without a boundary

k-boundary = boundary of an (k + 1)-dimensional chain

Z = cycle group

B = boundary group

H = Z/B

two cycles are homologous
if they differ by a boundary

over Z2, a set of
simplices

homology: count cycles up to
differences by boundaries



Homology in Dionysus

complex = sphere8

f = Filtration(complex, dim_cmp)

p = StaticPersistence(f)

p.pair_simplices()

dgms = init_diagrams(p,f, lambda s: 0)

for i, dgm in enumerate(dgms):

print "Dimension:", i

print dgm

Dimension: 0

0 inf

Dimension: 1

Dimension: 2

Dimension: 3

Dimension: 4

Dimension: 5

Dimension: 6

Dimension: 7

Dimension: 8

0 inf

Dionysus doesn’t compute homology directly, but we can get it as a by-
product of persistent homology.

03-complex.py



Persistent Homology (pipeline)

Filtration of a simplicial complex:

K1 ⊆ K2 ⊆ . . . ⊆ Kn

(w.l.o.g. assume Ki+1 = Ki + σi).
so, really, an ordering of simplices
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Persistent Homology (pipeline)

Filtration of a simplicial complex:

K1 ⊆ K2 ⊆ . . . ⊆ Kn

(w.l.o.g. assume Ki+1 = Ki + σi).
so, really, an ordering of simplices

1 2 3 4 5 6

0
1

2

0
1

2

0
1

2

0
1

0
1

0

simplices = [([0], 1), ([1], 2), ([0,1], 3), ([2], 4), \

([1,2], 5), ([0,2], 6)]

f = Filtration()

for vertices, time in simplices:

f.append(Simplex(vertices, time))

f.sort(dim_data_cmp)

for s in f:

print s, s.data # s.data is the time 04-1-filtration.py
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Filtration of a simplicial complex:

K1 ⊆ K2 ⊆ . . . ⊆ Kn

(w.l.o.g. assume Ki+1 = Ki + σi).
so, really, an ordering of simplices
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Persistent Homology (pipeline)

Filtration of a simplicial complex:

K1 ⊆ K2 ⊆ . . . ⊆ Kn

(w.l.o.g. assume Ki+1 = Ki + σi).
so, really, an ordering of simplices

H(K1)→ H(K2)→ . . .→ H(Kn)

H0 :

H1 :

1 2 3 4 5 6

0
1

2

0
1

2

0
1

2

0
1

0
1

0

p = StaticPersistence(f)

p.pair_simplices()

dgms = init_diagrams(p, f)

for i, dgm in enumerate(dgms):

print "Dimension:", i

print dgm 04-2-persistence.py



Filtrations: α-shapes
Kr = Nrv{Br(u) ∩Voru}

Kr1 ⊆ Kr2 ⊆ . . . ⊆ Krσ ⊆ . . .

P : Kr ' ∪p∈P Br(p)
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Filtrations: α-shapes
Kr = Nrv{Br(u) ∩Voru}

Kr1 ⊆ Kr2 ⊆ . . . ⊆ Krσ ⊆ . . .

rσ = min
x∈Vorσ

dP (x)

P : Kr ' ∪p∈P Br(p)

from math import sqrt

points = read_points(’data/trefoil.pts’)

f = Filtration()

fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.data[0]) < 1])

Fills f with all the simplices of the Delaunay triangulation
(thanks to CGAL’s Delaunay package).

The data field of each simplex is set to a pair (r2σ, σ ∩Vorσ 6= ∅).



Filtrations: α-shapes
Kr = Nrv{Br(u) ∩Voru}

Kr1 ⊆ Kr2 ⊆ . . . ⊆ Krσ ⊆ . . .

rσ = min
x∈Vorσ

dP (x)

P : Kr ' ∪p∈P Br(p)

from math import sqrt

points = read_points(’data/trefoil.pts’)

f = Filtration()

fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.data[0]) < 1])

an alpha shape is a one-liner thanks
to list comprehensions

Fills f with all the simplices of the Delaunay triangulation
(thanks to CGAL’s Delaunay package).

The data field of each simplex is set to a pair (r2σ, σ ∩Vorσ 6= ∅).



Filtrations: α-shapes
Kr = Nrv{Br(u) ∩Voru}

Kr1 ⊆ Kr2 ⊆ . . . ⊆ Krσ ⊆ . . .

rσ = min
x∈Vorσ

dP (x)

P : Kr ' ∪p∈P Br(p)

f.sort(dim_data_cmp)

p = StaticPersistence(f)

p.pair_simplices()

dgms = init_diagrams(p, f, lambda s: sqrt(s.data[0]))

show_diagram(dgms)

from math import sqrt

points = read_points(’data/trefoil.pts’)

f = Filtration()

fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.data[0]) < 1])

05-alpha-shapes.py



Filtrations: Vietoris-Rips
VR(r) = {σ ⊆ P | |u− v| < r ∀ u, v ∈ σ}

NB: only pairwise distances matter

(clique complex of r-nearest neighbor graph)
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NB: only pairwise distances matter

points = read_points(’data/trefoil.pts’)

distances = PairwiseDistances(points)

distances = ExplicitDistances(distances)
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f = Filtration()

rips.generate(2, 1.7, f.append)

print "Number of simplices:", len(f)
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Filtrations: Vietoris-Rips
VR(r) = {σ ⊆ P | |u− v| < r ∀ u, v ∈ σ}

NB: only pairwise distances matter

points = read_points(’data/trefoil.pts’)

distances = PairwiseDistances(points)

distances = ExplicitDistances(distances)

rips = Rips(distances)

f = Filtration()

rips.generate(2, 1.7, f.append)

print "Number of simplices:", len(f)

show_complex(points, f)

show_complex(points, [s for s in f if rips.eval(s) < 1.6])

skeleton
cutoff

f.sort(rips.cmp)

p = StaticPersistence(f)

p.pair_simplices()

dgms = init_diagrams(p, f, rips.eval)

show_diagram(dgms[:2])

(clique complex of r-nearest neighbor graph)

06-rips.py



Filtrations: Lower-Star

f̂ : VrtK → R
f : |K| → R linearly interpolated

|K|a = f−1(−∞, a]
Interested in the filtration:

|K|a1 ⊆ |K|a2 ⊆ . . . ⊆ |K|an

f

a
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Filtrations: Lower-Star

f̂ : VrtK → R
f : |K| → R linearly interpolated

|K|a = f−1(−∞, a]

|K|a ' Ka

Ka = {σ ∈ K | max
v∈σ

f̂(v) ≤ a}

a

(changes only as a passes vertex values)

Interested in the filtration:

|K|a1 ⊆ |K|a2 ⊆ . . . ⊆ |K|an

So, instead, we can compute:

Ka1 ⊆ Ka2 ⊆ . . . ⊆ Kan

f



Filtrations: Lower-Star
elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)

elephant_complex = closure(elephant_complex, 2)

show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis

def value(v):

return points[v][axis]

return value

value = projection(elephant_points, 1)



Filtrations: Lower-Star
elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)

elephant_complex = closure(elephant_complex, 2)

show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis

def value(v):

return points[v][axis]

return value

value = projection(elephant_points, 1)

def max_vertex_compare(value):

def max_vertex(s):

return max(value(v) for v in s.vertices)

def compare(s1, s2):

return cmp(s1.dimension(), s2.dimension()) or \

cmp(max_vertex(s1), max_vertex(s2))

return compare

f = Filtration(elephant_complex, max_vertex_compare(value))



Filtrations: Lower-Star
elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)

elephant_complex = closure(elephant_complex, 2)

show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis

def value(v):

return points[v][axis]

return value

value = projection(elephant_points, 1)

def max_vertex_compare(value):

def max_vertex(s):

return max(value(v) for v in s.vertices)

def compare(s1, s2):

return cmp(s1.dimension(), s2.dimension()) or \

cmp(max_vertex(s1), max_vertex(s2))

return compare

f = Filtration(elephant_complex, max_vertex_compare(value))

p = DynamicPersistenceChains(f)

p.pair_simplices()

dgms = init_diagrams(p, f, lambda s: max(value(v) for v in s.vertices))

show_diagrams(dgms)

07-ls-filtration.py



Extended Persistence
Extended persistence was introduced as a way to measure the essential
persistence classes:

H(Xa1) → H(Xa2) → . . . → H(Xan) → H(X)
↓

H(X,Xa1) ← H(X,Xa2) ← . . . ← H(X,Xan) ← H(X, ∅)



Extended Persistence
Extended persistence was introduced as a way to measure the essential
persistence classes:

H(Xa1) → H(Xa2) → . . . → H(Xan) → H(X)
↓

H(X,Xa1) ← H(X,Xa2) ← . . . ← H(X,Xan) ← H(X, ∅)

H(X,Y) ' H(X ∪ w ∗ Y, w)

execfile(’08-extended-persistence.py’)



Persistent Homology
Filtration D, ordered boundary matrix (indexed by simplices)

D[i, j] = index of σi in boundary of σj

Persistence →

→

Decomposition R = DV , where R is reduced, meaning low-
est ones are in unique rows, and V is upper-triangular.

R
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D V
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Persistent Homology
Filtration D, ordered boundary matrix (indexed by simplices)

D[i, j] = index of σi in boundary of σj

Persistence →

→

Decomposition R = DV , where R is reduced, meaning low-
est ones are in unique rows, and V is upper-triangular.

R

=

D V

·0

σσ

cycle

τ τ

σ

boundary chain

StaticPersistence computes just R, enough for the pairing.
Iterating over StaticPersistence, we can access columns of R, through cycle attribute.
(Also pair(), sign(), unpaired().)

smap = p.make_simplex_map(f)

for i in p:

if not i.sign():

print [smap[j] for j in i.cycle]
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print [smap[j] for j in i.cycle]

DynamicPersistenceChains computes matrices R and V .
Access columns of V through chain. (E.g., gives access to the infinitely persistent classes.)



Persistent Homology
Filtration D, ordered boundary matrix (indexed by simplices)

D[i, j] = index of σi in boundary of σj

Persistence →

→

Decomposition R = DV , where R is reduced, meaning low-
est ones are in unique rows, and V is upper-triangular.

R

=

D V

·0

σσ

cycle

τ τ

σ

boundary chain

StaticPersistence computes just R, enough for the pairing.
Iterating over StaticPersistence, we can access columns of R, through cycle attribute.
(Also pair(), sign(), unpaired().)

smap = p.make_simplex_map(f)

for i in p:

if not i.sign():

print [smap[j] for j in i.cycle]

DynamicPersistenceChains computes matrices R and V .
Access columns of V through chain. (E.g., gives access to the infinitely persistent classes.)

while True:

pt = show_diagram(dgms)

if not pt: break

print pt

i = pt[2]

smap = persistence.make_simplex_map(f)

chain = [smap[ii] for ii in i.chain]

pair_cycle = [smap[ii] for ii in i.pair().cycle]

pair_chain = [smap[ii] for ii in i.pair().chain]

show_complex(elephant_points, subcomplex = chain)

show_complex(elephant_points, subcomplex = pair_cycle + pair_chain)

execfile(’08-cycle-chain.py’)
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γ
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Dgm(f)
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γ
‖x− γ(x)‖∞

bottleneck_distance(dgm1, dgm2)
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Stability Theorem:
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Diagrams, Stability, and Distances

Dgm(g)

Dgm(f)

Bottleneck distance:

W∞(Dgm(f),Dgm(g)) = inf
γ
‖x− γ(x)‖∞

Stability Theorem:

W∞(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞

bottleneck_distance(dgm1, dgm2)

Wasserstein distance:

Wq
q(Dgm(f),Dgm(g)) = inf

γ

∑
‖x− γ(x)‖q∞

wasserstein_distance(dgm1, dgm2, q)

Wasserstein Stability Theorem: For Lipschitz functions f and g,
under some technical conditions on the domain,

Wq(Dgm(f),Dgm(g)) ≤ C · ‖f − g‖k∞

(More sensitive to the entire diagram.)
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Circle-Valued Coordinates

H1(X;Z) ∼= [X,S1]

Start with the canonical isomorphism
between 1-dimensional cohomology
classes and homotopy classes of maps
into a circle.

Algorithm:

1. Compute persistent cohomology classes

2. Turn each representative cocycle z∗ into a map, X → S1

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

Vertices map to 0;
edges wind with the
degree given by z∗(e).
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Circle-Valued Coordinates

H1(X;Z) ∼= [X,S1]

Start with the canonical isomorphism
between 1-dimensional cohomology
classes and homotopy classes of maps
into a circle.

Algorithm:

1. Compute persistent cohomology classes

2. Turn each representative cocycle z∗ into a map, X → S1

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

• How to get a tangible feel for the topological features that we find?

• Maps into circles, natural for:

– Phase coordinates for waves

– Angle coordinates for directions

– Periodic data



Persistent Cohomology in Dionysus

points = read_points(’data/annulus.pts’)

execfile(’10-circular.py’)

from math import sqrt

f = Filtration()

fill_alpha_complex(points, f)

f.sort(dim_data_cmp)

p = StaticCohomologyPersistence(f, prime = 11)

p.pair_simplices()

dgms = init_diagrams(p,f, lambda s: sqrt(s.data[0]), lambda n: n.cocycle)

while True:

pt = show_diagram(dgms)

if not pt: break

rf = Filtration((s for s in f if sqrt(s.data[0]) <= (pt[0] + pt[1])/2))

values = circular.smooth(rf, pt[2])

cocycle = [rf[i] for (c,i) in pt[2] if i < len(rf)]

show_complex(points, subcomplex = cocycle)

show_complex(points, values = values)
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execfile(’10-circular.py’)

from math import sqrt

f = Filtration()

fill_alpha_complex(points, f)

f.sort(dim_data_cmp)

p = StaticCohomologyPersistence(f, prime = 11)

p.pair_simplices()

dgms = init_diagrams(p,f, lambda s: sqrt(s.data[0]), lambda n: n.cocycle)

while True:

pt = show_diagram(dgms)

if not pt: break

rf = Filtration((s for s in f if sqrt(s.data[0]) <= (pt[0] + pt[1])/2))

values = circular.smooth(rf, pt[2])

cocycle = [rf[i] for (c,i) in pt[2] if i < len(rf)]

show_complex(points, subcomplex = cocycle)

show_complex(points, values = values)



Image Persistence

Noisy domains: instead of f : X→ R, we have a function f̃ : P → R
P a sample of X

For suitably-chosen parameters α and β:

H(Ka1
β ) → H(Ka2

β ) → . . . → H(Kan
β )

↑ ↑ ↑
H(Ka1

α ) → H(Ka2
α ) → . . . → H(Kan

α )

Ka
α = alpha shape or Vietoris-Rips complex with parameter α built

on f̃−1(−∞, a]



Image Persistence

Noisy domains: instead of f : X→ R, we have a function f̃ : P → R
P a sample of X

For suitably-chosen parameters α and β:

H(Ka1
β ) → H(Ka2

β ) → . . . → H(Kan
β )

↑ ↑ ↑
H(Ka1

α ) → H(Ka2
α ) → . . . → H(Kan

α )

Ka
α = alpha shape or Vietoris-Rips complex with parameter α built

on f̃−1(−∞, a]
# assume parallel lists points and values

f = Filtration()

f = fill_alpha_complex(points, f)

# use persistence of f to choose alpha and beta chosen

f = Filtration([s for s in f if sqrt(s.data[0]) <= beta])

f.sort(max_vertex_compare(values))

p = ImagePersistence(f, lambda s: sqrt(s.data[0]) <= alpha)

p.pair_simplices()

dgms = init_diagrams(p, f, lambda s: max(values(v) for v in s.vertices))

show_diagrams(dgms)
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Conclusions

• Practice reinforces theory. For example, persistent cohomology algorithm,
in practice, is the fastest way I know to compute persistence diagrams.
(This realization is a pure accident of experimental work with circular
coordinates.) Studying why this is the case has lead to “Dualities in
Persistent (Co)Homology.”

• Different goals over the last 6-7 years have lead to different designs. Time
for a major rewrite to refactor and unify different approaches.

• Python bindings were one of the best decisions. (Hint, hint, CGAL.)
However, sometimes much slower than the C++ counter-parts. A lot of
the common functionality is available as examples in C++; don’t overlook
them.

• Dionysus includes significant chunks of open-source code by the following
people (many thanks to them):

• Jeffrey Kline (LSQR port to Python)

• Bernd Gaertner (implementation of Miniball algorithm used for Čech complexes)

• John Weaver (Hungarian algorithm used for Wasserstein distances)

• Arne Schmitz (PyGLWidget.py)

• Persistence is easy to use. Dionysus can help you try out new ideas.



Thank you for your
time and attention!
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