A Practical Guide to Persistent
Homology

Dmitriy Morozov
Lawrence Berkeley National Lab

A Practical Guide to Persistent
Homology

(Dionysus edition)

from dionysus import *
Code snippets available at: from dionysus.viewer import x
http://hg.mrzv.org/Dionysus-tutorial from readers import *

Dmitriy Morozov
Lawrence Berkeley National Lab

Dionysus

o C++ library

e Implements various algorithms that I've found interesting over the years:

— ordinary persistence

— vineyards

— Image persistence

— zigzag persistence

— persistent cohomology
— circular coordinates

— alpha shapes

— Vietoris-Rips complexes

— bottleneck and wasserstein distances between diagrams

e To make life easier, added Python bindings

e T[his talk exclusively in Python

Python

e Good news: You already know Python! It's just like pseudo-code in
your papers, but cleaner. ;-)

e Lists and list comprehensions
1st1 = [1,3,5,7,9,11,13]
1st2 = [i for i in 1stl if i < 9]
print 1st2 # [1,3,5,7]
e [unctions
def pow(x):
def f(y):
return y**x
return f

e |Loops and conditionals
for i in 1lstil:

if 1 4 3 == 0 and i > 5:
print square(i)
e |lots of extra functionality in modules
from math import sqrt
from dionysus import *

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

° o
o}
%00 ,% 5 o0 © 06° o o
Q o’ o o o
o) (o) O O O
o) o o)
(o) o o) O o (o)
00 S o o ©
8 o o ° o (o]
o) OO o) o ©
o 8§ o o © 0©
OO OO o (0%
o ° o o
o o
o o o © 8
0 0 o. © o o
o o © o5 ©
o) o) ¢ o o
o %, o o© 6 6 0o 00 o ©O
o} ° o O o
o O o
o) o ©

What is the homology of this point cloud?

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

P o)
o)
%00,% o 0 ° %° 0 5 o
o) o) O o o O oo
o) o o)
o 6 o o o o)
00 o) o O
8 o 0O © o (o)
o) 00 o) o O
o) 8 © o ©° o©
Oop OOO o >
Oo c>OO °
o O o) 8
(o] OQ)O o) o O o
o o) © o O
o 0O OOO
o) o)
0° O o, o° °© o o, ° 5
o)
O O

What is the homology of this point cloud?

e “Squint our eyes”

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

e “Squint our eyes”

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

e “Squint our eyes”

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

e “Squint our eyes”

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

e “Squint our eyes”

Persistent Homology

e Over a decade old now. Introduced as a way to detect prominent topo-
logical features in point clouds. Since then evolved into a rich theory with
many applications.

What is the homology of this point cloud?

e “Squint our eyes” no natural fixed scale — persistent homology

P — point set in R" P, = Upep B (p)

O oO o v
6(’)00 o
oo 8 °3
S 9 o
OOOO g 69
o go@
% &G
o® 080 § _o
S oye 4 P 8@0%%0000
70 082,08

P — point set in R" P, = Upep B (p)

O o 0 S
§OO o
oG B, Ve
83 o) <§) O
Oo © o
o %;96
% § 3
0 O o
@OOQS)OdDO 8000%%0000
06 %oog

P — point set in R" P, = Upep B (p)

O oO 0 S
6()300 o
o)
830080 ooo
. Oo O O
OOO 0%196
% 5%
0 O o
@OOQS)OdDO 8000%%0000
70 082,08

Eye Squintin

Upep B, (p)

P, =

P — point set in R"

Eye Squintin

()

UpEP Bfr

P, =

P — point set in R"

Eye Squintin

P — point set in R"

p)

UpEP Bfr(

P, =

— H(R™)

0— H(P,) = H(P.,) — ...

Eye Squinting”

P — point set in R" P, = Upep B, (p)

Death

10 points

/,

Dgm;
Birth

P — point set in R" P, = Upep B, (p)

Birth

0— H(P,) = H(P,) = ... > HR")

Eye Squinting”

P — point set in R" P, = Upep B, (p)

10 points

//

Dgm;
Birth

Squinting our eyes gives us a
continuous function. Algorithms
work with (discrete) simplicial
complexes.

Simplices and Complexes

0 (Geometric) k-simplex: convex hull of (k4 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a

2 1

universal set.

Boundary: Ofvg, ..., vk] = . (—=1)"[vg, ..., 04 ..., VK]

s = Simplex([0,1,2])
print "Dimension:", s.dimension

print "Vertices:"
for v in s.vertices:
print v

print "Boundary:"
for sb in s.boundary:
print sb

Dimension: 2
Vertices:

0

1

2

Boundary:
<1, 2>

<0, 2>

<0, 1>

Simplices and Complexes

0 (Geometric) k-simplex: convex hull of (k4 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

2 1 .
Boundary: Olvo,...,vk] = > .(=1)"vo, ..., V4, .., Uk
Simplicial complex: collection of simplices closed under
face relation.
1 3
®
0
o
2 4

not a simplicial

complex:
o

-

Simplices and Complexes

0 (Geometric) k-simplex: convex hull of (k4 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
universal set.

3 : Boundary: Ofvg, ..., vk] = . (—=1)"[vg, ..., 04 ..., VK]
Simplicial complex: collection of simplices closed under
face relation.
1 3
! complex = [Simplex(vertices) for vertices in
0 (fol, [11, [2], (31, [4], [5],
0,11, [0,2], [1,2], [0,1,2],
¢ 1,31, [2,4], [3,4]1]1]
2 4

not a simplicial

complex:
o

-

Simplices and Complexes

0 (Geometric) k-simplex: convex hull of (k4 1) points.

(Abstract) k-simplex: subset of (k + 1) elements of a
5 . universal set.

Boundary: Ofvg, ..., vk] = . (—=1)"[vg, ..., 04 ..., VK]

Simplicial complex: collection of simplices closed under
face relation.

1 3
! complex = [Simplex(vertices) for vertices in
0 (fol, [11, [2], (31, [4], [5],
0,11, [0,2], [1,2], [0,1,2],
¢ 1,31, [2,4], [3,4]1]1]
2 4
not a simplicial simplex9 = Simplex([0,1,2,3,4,5,6,7,8,9])
complex: sphere8 = closure([simplex9], 8)

print len(sphere8)

— / 1022

Homolo

Phe RS

|||||
||||||||||||||||
(R Ly
1y 1
\ .
. .
.
.

homology: count cycles up to

over Zo, a set of

k-chain = formal sum of k-simplices o
simplices

k-cycle = chain without a boundary

k-boundary = boundary of an (k -+ 1)-dimensional chain

two cycles are homologous

/ = cycle group if they differ by a boundary

B = boundary group
H=7/B

differences by boundaries

Homologx In Dionxsus

Dionysus doesn't compute homology directly, but we can get it as a by-
product of persistent homology.

complex = sphereS8 o .)
i1mension.

: : : O inf

f = Filtration(complex, dim_cmp) ,ln ,
, , Dimension: 1
p = StaticPersistence(f) R
p.pair_simplices() Dimension: 3
Dimension: 4
dgms = init_diagrams(p,f, lambda s: 0) Dimension: 5
Dimension: 6
for i, dgm in enumerate(dgms): Dimension: 7
print "Dimension:", i Dimension: 3

print dgm O int

03-complex.py

Persistent Homolo ipeline
Filtration of a simplicial complex:

KiCKyC...CK,

(w.l.o.g. assume K; .1 = K; + 7).
~— » So, really, an ordering of simplices

1 2 3 2 4 2 5 2 6

e e] o] o]] L

Persistent Homolo Ipeline

Filtration of a simplicial complex:

KiCKyC...CK,

(w.l.o.g. assume K; .1 = K; + 7).
~— » So, really, an ordering of simplices

1 2 3 2 4 2 5 2 6

e e] o] o]] L

simplices = [([0], 1), (f1l1, 2>, (fo,11, 3), ([21, 4), \
([1,2]1, 5), ([0,2], 6)]
f = Filtration()
for vertices, time in simplices:
f .append(Simplex(vertices, time))
f.sort(dim_data_cmp)
for s in f:
print s, s.data # s.data 1s the time

04-1-filtration.py

Persistent Homolo ipeline
Filtration of a simplicial complex:

KiCKyC...CK,

(w.l.o.g. assume K; .1 = K; + 7).

~— » So, really, an ordering of simplices
1 2 3 2 4 2 5 2 6
° >
° 2 e
1 1 1 1 1
0@ 0@ 00/. 00/. 0 0
Hl o—Ph
H ® o) ° o
0 o >

Persistent Homolo Ipeline

p = StaticPersistence(f)

p.pair_simplices()

dgms = init_diagrams(p, £f)

for i, dgm in enumerate(dgms) :
print "Dimension:", 1
print dgm

04-2-persistence.py

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}

Ky >~ Upep Br(p)
K, CK., C..CK, C...

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}

Ky >~ Upep Br(p)
K, CK., C..CK, C...

Filtrations: a-shapes
K, = Nrv{B,.(u) N Voru}
P Ky >~ Upep B..(p)
‘ ! K, CK,C..CK, C...

)¢

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}
P K'r' = UpEP Br(p)

‘ K, CK,C..CK, C...

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}

i 4 K'r' = UpEP Br(p)
>

‘ K, CK,C..CK, C...

Filtrations: «a-shapes

K, = Nrv{B,(u) N Vor u}
- K, ~ Upep B;(p)
K, CK,, C...CK, C...

Filtrations: «-shapes

K, = Nrv{B,(u) N Vor u}
P K, ~ Upep B;(p)
K, CK,, C...CK, C...

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}
P K, ~ UpEP Br(p)

ro = min dp(x)
xeVor o

K, CK, C...CK, C...

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}
P K'r' = UpEP Br(p)
K, CK,, C...CK, C...

ro = min dp(x)
xeVor o

from math import sqrt

points = read_points(’data/trefoil.pts’)

f = Filtration()

fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.datal[0]) < 1])

Fills £ with all the simplices of the Delaunay triangulation
(thanks to CGAL's Delaunay package).

The data field of each simplex is set to a pair (12,0 N Voro #).

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}
P K, ~ Upep By (p)
K, CK,,C...CK, C...

ro = min dp(x)
xeVor o

from math import sqrt

points = read_points(’data/trefoil.pts’) ok shane s oneliner thanke
f = Filtration() to list comprehensions
fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.datal0]) < 1])

Fills £ with all the simplices of the Delaunay triangulation
(thanks to CGAL's Delaunay package).

The data field of each simplex is set to a pair (12,0 N Voro #).

Filtrations: a-shapes

K, = Nrv{B,(u) N Vor u}
P K, ~ Upep By (p)

K, CK., C..CK, C...
ro = min dp(x)
xeVor o

from math import sqrt

points = read_points(’data/trefoil.pts’)

f = Filtration()

fill_alpha_complex(points, f)

show_complex(points, [s for s in f if sqrt(s.datal[0]) < 1])

f.sort(dim_data_cmp)
p = StaticPersistence(f) 05-alpha-shapes.py
p.pair_simplices()

dgms = init_diagrams(p, f, lambda s: sqrt(s.datal[0]))
show_diagram(dgms)

Filtrations: Vietoris-Rips

VR(r)={c CPl|lu—v|<rVuveao}

(clique complex of r-nearest neighbor graph)

NB: only pairwise distances matter

Filtrations: Vietoris-Rips

VR(r)={c CPl|lu—v|<rVuveao}

(clique complex of r-nearest neighbor graph)

NB: only pairwise distances matter

points = read_points(’data/trefoil.pts’)
distances = PairwiseDistances(points)
distances = ExplicitDistances(distances)
rips = Rips(distances)

f = Filtration()

rips.generate(2, 1.7, f.append)

print "Number of simplices:", len(f)

show_complex(points, f)
show_complex(points, [s for s in f if rips.eval(s) < 1.6])

Filtrations: Vietoris-Rips

VR(r)={c CPl|lu—v|<rVuveao}

(clique complex of r-nearest neighbor graph)

NB: only pairwise distances matter

points = read_points(’data/trefoil.pts’)
distances = PairwiseDistances(points)
distances = ExplicitDistances(distances)
rips = Rips(distances) sleleton
f = Filtration()m/ cutoff
rips.generate(2, 1.7, f.append)

print "Number of simplices:", len(f)

show_complex(points, f)
show_complex(points, [s for s in f if rips.eval(s) < 1.6])

Filtrations: Vietoris-Rips

VR(r)={c CPl|lu—v|<rVuveao}

(clique complex of r-nearest neighbor graph)

NB: only pairwise distances matter

points = read_points(’data/trefoil.pts’)
distances = PairwiseDistances(points)
distances = ExplicitDistances(distances)
rips = Rips(distances) sleleton
f = Filtration()m/ cutoff
rips.generate(2, 1.7, f.append)

print "Number of simplices:", len(f)

° 06-rips.
show_complex(points, f) rips.py

show_complex(points, [s for s in f if rips.eval(s) < 1.6])

f.sort(rips.cmp)
p = StaticPersistence(f)
p.pair_simplices()

dgms = init_diagrams(p, f, rips.eval)
show_diagram(dgms[:2])

Filtrations: Lower-Star

AT FiVitK > R
\ f: ’K’ — R linearly interpolated
A Ko = f7(=00,4d]

\// \/ Interested in the filtration:
Ko, € K], © ... € |K]a,

Filtrations: Lower-Star

AT FoVitK > R

\ f: ’K’ — R linearly interpolated
A Ko = f7(=00,4d]

\/ \/ Interested in the filtration:
Ko, C|K|a, € ... C|K]|q,

Ka:{UEK\mEaXf(U)Sa}
vco
(changes only as a passes vertex values)

K|, ~ K,

So, instead, we can compute:

Ko C Ky, C...C K,

Filtrations: Lower-Star
f:VitK — R
Vi
f: ’K’ — R linearly interpolated

K| = f_l(_ooa al

Interested in the filtration:
Ko, € [Kla, ... C |K]q,

Ka:{UEK\mEaXf(U)Sa}

(changes only as a passes vertex values)

K|, ~ K,

So, instead, we can compute:

Ko C Ky, C...C K,

Filtrations: Lower-Star

f:VitK > R

f: ’K’ — R linearly interpolated

K| = f_l(_ooa al

Interested in the filtration:
Ko, € [Kla, ... C |K]q,

Ka:{OEK\mEaXf(v)Sa}
vco
(changes only as a passes vertex values)

K|, ~ K,

So, instead, we can compute:

Ko C Ky, C...C K,

Filtrations: Lower-Star

elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)
elephant_complex = closure(elephant_complex, 2)
show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis
def value(v):
return pointsl[v] [axis]
return value
value = projection(elephant_points, 1)

Filtrations: Lower-Star

elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)
elephant_complex = closure(elephant_complex, 2)
show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis
def value(v):
return pointsl[v] [axis]
return value
value = projection(elephant_points, 1)

def max_vertex_compare(value):
def max_vertex(s):
return max(value(v) for v in s.vertices)
def compare(sl, s2):
return cmp(sl.dimension(), s2.dimension()) or \
cmp (max_vertex(sl), max_vertex(s2))
return compare

f = Filtration(elephant_complex, max_vertex_compare(value))

Filtrations: Lower-Star

elephant_points, elephant_complex = read_off(’data/cgal/elephant.off’)
elephant_complex = closure(elephant_complex, 2)
show_complex(elephant_points, elephant_complex)

def pojection(points, axis = 1): # projection onto a coordinate axis
def value(v):
return pointsl[v] [axis]
return value
value = projection(elephant_points, 1)

def max_vertex_compare(value):
def max_vertex(s):
return max(value(v) for v in s.vertices)
def compare(sl, s2):
return cmp(sl.dimension(), s2.dimension()) or \
cmp (max_vertex(sl), max_vertex(s2))
return compare

07-Is-filtration.py

f

Filtration(elephant_complex, max_vertex_compare(value))

p = DynamicPersistenceChains(f)

p.pair_simplices()

dgms = init_diagrams(p, f, lambda s: max(value(v) for v in s.vertices))
show_diagrams (dgms)

Extended Persistence

Extended persistence was introduced as a way to measure the essential
persistence classes:

HX,,) — HZX,) — ... —- HZX,) — HZX

!
HX,X%) «+ H(X,X%) <« ... « HXX) «+ H(X,0)

Extended Persistence

Extended persistence was introduced as a way to measure the essential
persistence classes:

HX,,) — HZX,) — ... —- HZX,) — HZX

!
HX,X%) «+ H(X,X%) <« ... « HXX) «+ H(X,0)

HX,Y) > HXUw*x Y, w)

execfile('08-extended-persistence.py’)

Persistent Homology

Filtration — D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

Persistence — Decomposition R = DV, where R is reduced, meaning low-
est ones are in unique rows, and V' is upper-triangular.

Persistent Homology

Filtration — D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

Persistence — Decomposition R = DV, where R is reduced, meaning low-

est ones are in unique rows, and V' is upper-triangular.
o o

cycle

Persistent Homology

Filtration — D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

Persistence — Decomposition R = DV, where R is reduced, meaning low-

est ones are in unique rows, and V' is upper-triangular.
o T o T

P R D Y tv

boundary cycle chain

Persistent Homology

Filtration — D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

Persistence — Decomposition R = DV, where R is reduced, meaning low-
est ones are in unique rows, and V' is upper-triangular.

o) T O T
o)
O —
P R D bt v
boundary cycle chain

StaticPersistence computes just R, enough for the pairing.

lterating over StaticPersistence, we can access columns of R, through cycle attribute.
(Also pair(), sign(), unpaired().)

smap = p.make_simplex_map(f)
for 1 in p:
if not i.sign():
print [smap[j] for j in i.cycle]

Persistent Homology

Filtration — D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

Persistence — Decomposition R = DV, where R is reduced, meaning low-
est ones are in unique rows, and V' is upper-triangular.

o) T O T
o)
O —
P R D bt v
boundary cycle chain

StaticPersistence computes just R, enough for the pairing.
lterating over StaticPersistence, we can access columns of R, through cycle attribute.
(Also pair(), sign(), unpaired().)

smap = p.make_simplex_map(f)
for 1 in p:
if not i.sign():
print [smap[j] for j in i.cycle]

DynamicPersistenceChains computes matrices R and V.
Access columns of V through chain. (E.g., gives access to the infinitely persistent classes.)

Persistent Homology

Filtration

Persistence

— D, ordered boundary matrix (indexed by simplices)
D|t, j] = index of o; in boundary of o

— Decomposition R = DV, where R is reduced, meaning low-
est ones are in unique rows, and V' is upper-triangular.

while True:

pt = show_diagram(dgms)

if not pt:
print pt
i = pt[2]

o) T O T
O —
P R D bt v
boundary cycle chain

execfile(’08-cycle-chain.py”’)
break

smap = persistence.make_simplex_map(f)
chain = [smap[ii] for ii in i.chain]

pair_cycle
pair_chain

= [smap[ii] for ii in i.pair().cycle]
= [smap[ii] for ii in i.pair().chain]

show_complex(elephant_points, subcomplex = chain)
show_complex(elephant_points, subcomplex = pair_cycle + pair_chain)

Diagrams, Stability, and Distances

A

Dgm(f)

Diagrams, Stability, and Distances

A Bottleneck distance:

Woo (Dgm(f), Dgm(g)) = i{gf |z —7(2)] oo

Diagrams, Stability, and Distances

A Bottleneck distance:

Woo (Dgm(f), Dgm(g)) = i{gf |z —7(2)] oo

Dgm(g)

Diagrams, Stability, and Distances

A Bottleneck distance:

Woo (Dgm(f), Dgm(g)) = i{gf |z —7(2)] oo

o bottleneck_distance(dgml, dgm2)
Dgm(f)
Dgm(g)

>

Diagrams, Stability, and Distances

A Bottleneck distance:

Woo(Dgm(f), Dgm(g)) = inf [l — (x|
bottleneck_distance(dgml, dgm2)

. Dgm(f)
Dgm(g) Stability Theorem:

g W oo (Dgm(f), Dgm(g)) < [|f — gl

Diagrams, Stability, and Distances

A Bottleneck distance:

Woo (Dgm(f), Dgm(g)) = i{gf |z —7(2)] oo

bottleneck_distance(dgml, dgm2)

’ Dgm(f)
Dgm(g) Stability Theorem:
>
Woo (Dgm(f), Dgm(g)) < [If — gllo
Wasserstein distance: (More sensitive to the entire diagram.)
Wi (Dgm(f), Dgm(g)) = inf }_ ||z = v(2)|%

wasserstein_distance(dgml, dgm2, q)

Wasserstein Stability Theorem: For Lipschitz functions f and g,
under some technical conditions on the domain,

W, (Dgm(f),Dgm(g)) < C - || f — gl

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find? : /

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find? :
Hl(X; Z) ~ [X, Sl] e Maps into circles, natural for: 7\4
— Phase coordinates for waves N

— Angle coordinates for directions

— Periodic data
t,

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find? :
H (ij) ~ [X, S] e Maps into circles, natural for:
Start with the canonical isomorphism — Phase coordinates for waves N\t
between 1-dimensional cohomology — Angle coordinates for directions
classes and homotopy classes of maps ..
. . Py P — Periodic data
into a circle. t.
Algorithm:

1. Compute persistent cohomology classes
2. Turn each representative cocycle z* into a map, X — S*

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find?
Hl(X; Z) ~ [X, Sl] e Maps into circles, natural for: 74
Start with the canonical isomorphism — Phase coordinates for waves N\t
between 1-dimensional cohomology — Angle coordinates for directions
?:rlli(s)szsc?fccli:omotopy classes of maps _ Periodic data N\
: Dgm;
Algorithm:

1. Compute persistent cohomology classes

2. Turn each representative cocycle z* into a map, X — S*

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find? :
H (ij) ~ [X, S] e Maps into circles, natural for:
Start with the canonical isomorphism — Phase coordinates for waves N\t
between 1-dimensional cohomology — Angle coordinates for directions
classes and homotopy classes of maps ..
. : Py P — Periodic data
into a circle. t.
+2
reth Vertices map to 0;
el s edges wind with the
": 3" degree given by z*(e).
.) - ...:..,:f:..:’
Algorithm:

1. Compute persistent cohomology classes

2. Turn each representative cocycle z* into a map, X — S*

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

Circle-Valued Coordinates

e How to get a tangible feel for the topological features that we find?

Hl(X;Z) ~ [X, Sl] e Maps into circles, natural for:

Start with the canonical isomorphism — Phase coordinates for waves

between 1-dimensional cohomology — Angle coordinates for directions
classes and homotopy classes of maps C

. . Py P — Periodic data

into a circle. t.

Algorithm:

1. Compute persistent cohomology classes

2. Turn each representative cocycle z* into a map, X — S*

3. Smooth that map (minimize variation across edges),
staying within the same cohomology/homotopy class
(equivalently, find the harmonic cocycle)

Persistent Cohomology in Dionysus

points = read_points(’data/annulus.pts’)
execfile(’10-circular.py’)

from math import sqrt

f = Filtration()
fill_alpha_complex(points, f)
f.sort(dim_data_cmp)

p = StaticCohomologyPersistence(f, prime = 11)
p.pair_simplices()
dgms = init_diagrams(p,f, lambda s: sqrt(s.datal[0]), lambda n: n.cocycle)

while True:
pt = show_diagram(dgms)
if not pt: break
rf = Filtration((s for s in f if sqrt(s.datal0]) <= (pt[0] + pt[1])/2))
values = circular.smooth(rf, pt[2])
cocycle = [rf[i] for (c,i) in pt[2] if i < len(rf)]
show_complex(points, subcomplex = cocycle)
show_complex(points, values = values)

Persistent Cohomology in Dionysus

points = read_points(’data/annulus.pts’)
execfile(’10-circular.py’)

from math import sqrt

f = Filtration()
fill_alpha_complex(points, f)
f.sort(dim_data_cmp)

p = StaticCohomologyPersistence(f, prime = 11)
p.pair_simplices()
dgms = init_diagrams(p,f, lambda s: sqrt(s.datal[O]), [lambda n: n.cocycle)

while True:
pt = show_diagram(dgms)
if not pt: break
rf = Filtration((s for s in f if sqrt(s.datal0]) <= (pt[0] + pt[1])/2))
values = circular.smooth(rf, pt[2])
cocycle = [rf[i] for (c,i) in pt[2] if i < len(rf)]
show_complex(points, subcomplex = cocycle)
show_complex(points, values = values)

Image Persistence

Noisy domains: instead of f: X — R, we have a function f: P — R

P a sample of X
For suitably-chosen parameters o and £:

H(Kgl) — H(KEQ) — .. = H(Kg“)
T T T
HKY) — HK?®?2) — ... — H(K)

K¢ = alpha shape or Vietoris-Rips complex with parameter « built
on f~1(—o0,al

Image Persistence

Noisy domains: instead of f: X — R, we have a function f: P — R

P a sample of X
For suitably-chosen parameters o and £:

H(Kgl) — H(KEQ) — .. = H(Kg”)
T T T
HKY) — HK?®?2) — ... — H(K)

K = alpha shape or Vietoris-Rips complex with parameter o built
on f~1(—o0,al

assume parallel lists points and values

= Filtration()

= fill_alpha_complex(points, f)

use persistence of f to choose alpha and beta chosen

H H Hh

= Filtration([s for s in f if sqrt(s.datal[0]) <= beta])
.sort (max_vertex_compare(values))

= ImagePersistence(f, lambda s: sqrt(s.datal[0]) <= alpha)
.pair_simplices()

g RO Hh Hh

dgms = init_diagrams(p, f, lambda s: max(values(v) for v in s.vertices))
show_diagrams (dgms)

Conclusions

e Persistence is easy to use. Dionysus can help you try out new ideas.

Conclusions

e Persistence is easy to use. Dionysus can help you try out new ic

e Practice reinforces theory. For example, persistent cohomology a

€as.

gorithm,

in practice, is the fastest way | know to compute persistence ¢

lagrams.

(This realization is a pure accident of experimental work with circular
coordinates.) Studying why this is the case has lead to “Dualities in

Persistent (Co)Homology."

Conclusions

e Persistence is easy to use. Dionysus can help you try out new ideas.

e Practice reinforces theory. For example, persistent cohomology algorithm,
in practice, is the fastest way | know to compute persistence diagrams.
(This realization is a pure accident of experimental work with circular
coordinates.) Studying why this is the case has lead to “Dualities in

Persistent (Co)Homology."

e Python bindings were one of the best decisions. (Hint, hint, CGAL.)
However, sometimes much slower than the C4+-+ counter-parts. A lot of
the common functionality is available as examples in C++; don't overlook

them.

Conclusions

e Persistence is easy to use. Dionysus can help you try out new ideas.

e Practice reinforces theory. For example, persistent cohomology algorithm,
in practice, is the fastest way | know to compute persistence diagrams.
(This realization is a pure accident of experimental work with circular
coordinates.) Studying why this is the case has lead to “Dualities in
Persistent (Co)Homology."

e Python bindings were one of the best decisions. (Hint, hint, CGAL.)

t
t

However, sometimes much slower than the C4+-+ counter-parts. A lot of

ne common functionality is available as examples in C++4-; don't overlook

NEM.

e Dionysus includes significant chunks of open-source code by the following
people (many thanks to them):

o Jeffrey Kline (LSQR port to Python)

e Bernd Gaertner (implementation of Miniball algorithm used for Cech complexes)

e John Weaver (Hungarian algorithm used for Wasserstein distances)

e Arne Schmitz (PyGLWidget.py)

Thank you for your
time and attention!

Title

